【題目】已知拋物線y=ax2+bx+c過(guò)點(diǎn)A(0,2),且拋物線上任意不同兩點(diǎn)M(x1,y1),N(x2,y2)都滿足;當(dāng)x1<x2<0時(shí)(x1﹣x2)(y1﹣y2)>0;當(dāng)0<x1<x2時(shí),(x1﹣x2)(y1﹣y2)<0.以原點(diǎn)O為圓心,OA為半徑的圓與拋物線的另兩個(gè)交點(diǎn)為B、C,且B在C的左側(cè),△ABC有一個(gè)內(nèi)角為60°.則拋物線的解析式是__.
【答案】y=﹣x2+2
【解析】
由A的坐標(biāo)確定出c的值,根據(jù)已知不等式判斷出y1﹣y2<0,可得出拋物線的增減性,確定出拋物線對(duì)稱軸為y軸,且開口向下,求出b的值,可得三角形ABC為等邊三角形,確定出B的坐標(biāo),代入拋物線解析式即可.
解:∵拋物線過(guò)點(diǎn)A(0,2),
∴c=2,
當(dāng)x1<x2<0時(shí),x1﹣x2<0,由(x1﹣x2)(y1﹣y2)>0,得到y1﹣y2<0,
∴當(dāng)x<0時(shí),y隨x的增大而增大,
同理當(dāng)x>0時(shí),y隨x的增大而減小,
∴拋物線的對(duì)稱軸為y軸,且開口向下,即b=0,
∵以O為圓心,OA為半徑的圓與拋物線交于另兩點(diǎn)B,C,如圖所示,
∴△ABC為等腰三角形,
∵△ABC中有一個(gè)角為60°,
∴△ABC為等邊三角形,且OC=OA=2,
設(shè)線段BC與y軸的交點(diǎn)為點(diǎn)D,則有BD=CD,且∠OBD=30°,
∴BD=OBcos30°=,OD=OBsin30°=1,
∵B在C的左側(cè),
∴B的坐標(biāo)為(﹣,﹣1),
∵B點(diǎn)在拋物線上,且c=2,b=0,
∴3a+2=﹣1,
解得:a=﹣1,
則拋物線解析式為y=﹣x2+2,
故答案為y=﹣x2+2.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,將△ABC繞點(diǎn)C順時(shí)針旋轉(zhuǎn)90°得到△EDC.若點(diǎn)A,D,E在同一條直線上,∠ACB=20°,則∠ADC的度數(shù)是
A. 55° B. 60° C. 65° D. 70°
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,在矩形OABC中,OA=3,OC=2,F(xiàn)是AB上的一個(gè)動(dòng)點(diǎn)(F不與A,B重合),過(guò)點(diǎn)F的反比例函數(shù)y= (x>0)的圖象與BC邊交于點(diǎn)E.
(1)當(dāng)F為AB的中點(diǎn)時(shí),求該函數(shù)的解析式;
(2)當(dāng)k為何值時(shí),△EFA的面積最大,最大面積是多少?
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,在平面直角坐標(biāo)系中,二次函數(shù)的圖像與軸交于兩點(diǎn),與軸交于點(diǎn),其頂點(diǎn)為,連接,過(guò)點(diǎn)作軸的垂線.
(1)求點(diǎn)的坐標(biāo);
(2)直線上是否存在點(diǎn),使的面積等于的面積的3倍?若存在,求出點(diǎn)的坐標(biāo);若不存在,請(qǐng)說(shuō)明理由.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】對(duì)于鈍角α,定義它的三角函數(shù)值如下:
sinα=sin(180°﹣α),cosα=﹣cos(180°﹣α)
(1)求sin120°,cos120°,sin150°的值;
(2)若一個(gè)三角形的三個(gè)內(nèi)角的比是1:1:4,A,B是這個(gè)三角形的兩個(gè)頂點(diǎn),sinA,cosB是方程4x2﹣mx﹣1=0的兩個(gè)不相等的實(shí)數(shù)根,求m的值及∠A和∠B的大小.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知二次函數(shù)y=ax2+bx+(a>0,b<0)的圖象與x軸只有一個(gè)公共點(diǎn)A
(1)當(dāng)a=時(shí),求點(diǎn)A的坐標(biāo);
(2)過(guò)點(diǎn)A的直線y=x+k與二次函數(shù)的圖象相交于另一點(diǎn)B,當(dāng)b≥﹣1時(shí),求點(diǎn)B的橫坐標(biāo)m的取值范圍
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】某汽車銷售公司11月份銷售某廠家的汽車,在一定范圍內(nèi),每部汽車的進(jìn)價(jià)與銷售量有如下關(guān)系:若當(dāng)月僅售出部汽車,則該部汽車的進(jìn)價(jià)為萬(wàn)元,每多售出部,所有售出的汽車的進(jìn)價(jià)均降低萬(wàn)元/部.月底廠家再根據(jù)銷售量返利給銷售公司:銷售量在部以內(nèi)(含部),每部返利萬(wàn)元;銷售量在部以上,每部返利萬(wàn)元.
(1)若該公司當(dāng)月售出部汽車,則每部汽車的進(jìn)價(jià)為 萬(wàn)元;
(2)若汽車的售價(jià)為萬(wàn)元/部,該公司計(jì)劃當(dāng)月盈利萬(wàn)元,則需售出多少部汽車? (盈利=銷售利潤(rùn)+返利)
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,已知雙曲線,經(jīng)過(guò)點(diǎn).
(1)求的值;
(2)過(guò)作軸,垂足為,點(diǎn)是雙曲線的一點(diǎn),連接,,若的面積為12,求直線的解析式.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,在邊長(zhǎng)為1的正方形網(wǎng)格中建立平面直角坐標(biāo)系,已知△ABC三個(gè)頂點(diǎn)分別為A(﹣1,2)、B(2,1)、C(4,5).
(1)畫出△ABC關(guān)于x對(duì)稱的△A1B1C1;
(2)以原點(diǎn)O為位似中心,在x軸的上方畫出△A2B2C2,使△A2B2C2與△ABC位似,且位似比為2,并求出△A2B2C2的面積.
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com