(2012•平谷區(qū)二模)如圖,BE⊥CE于E,AD⊥ED于D,∠ACB=90°,AC=BC.
求證:AD=CE.
分析:根據(jù)垂直的定義可得∠E=∠D=90°,然后根據(jù)同角的余角相等求出∠B=∠ACD,再利用“角角邊”證明△BCE和△CAD全等,根據(jù)全等三角形對(duì)應(yīng)邊相等即可得證.
解答:證明:∵BE⊥CE,AD⊥ED,
∴∠E=∠D=90°,
∵∠ACB=90°,
∴∠BCE+∠ACD=90°,
∵∠B+∠BCE=90°,
∴∠B=∠ACD,
在△BEC和△CDA中,
∠E=∠D
∠B=∠ACD
BC=AC

∴△BCE≌△CAD(AAS),
∴AD=CE.
點(diǎn)評(píng):本題考查了全等三角形的判定與性質(zhì),根據(jù)同角的余角相等求出∠B=∠ACD是證明三角形全等的關(guān)鍵.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

(2012•平谷區(qū)二模)如圖,在⊙O中,直徑AB=6,∠CAB=40°,則陰影部分的面積是

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

(2012•平谷區(qū)二模)如圖,?ABCD的一個(gè)外角∠DCE=70°,則∠A的度數(shù)是(  )

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

(2012•平谷區(qū)二模)下列等式成立的是( 。

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

(2012•平谷區(qū)二模)如圖是一個(gè)長(zhǎng)方體,AB=3,BC=5,AF=6,要在長(zhǎng)方體上系一根繩子連接AG,繩子與DE交于點(diǎn)P,當(dāng)所用繩子的長(zhǎng)最短時(shí),AP的長(zhǎng)為( 。

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

(2012•平谷區(qū)二模)|-
3
|-2cos60°+(π-3)0-(
1
3
)-1

查看答案和解析>>

同步練習(xí)冊(cè)答案