【題目】油桶制造廠的某車(chē)間主要負(fù)責(zé)生產(chǎn)制造油桶用的的圓形鐵片和長(zhǎng)方形鐵片,該車(chē)間有工人42人,每個(gè)工人平均每小時(shí)可以生產(chǎn)圓形鐵片120片或者長(zhǎng)方形鐵片80片.如圖,一個(gè)油桶由兩個(gè)圓形鐵片和一個(gè)長(zhǎng)方形鐵片相配套. 生產(chǎn)圓形鐵片和長(zhǎng)方形鐵片的工人各為多少人時(shí),才能使生產(chǎn)的鐵片恰好配套?

【答案】解:設(shè)生產(chǎn)圓形鐵片的工人為 人,則生產(chǎn)長(zhǎng)方形鐵片的工人為 人,可列出方程為

,

,

,

∴42x=4224=18 ,

即生產(chǎn)圓形鐵片的有24人,生產(chǎn)長(zhǎng)方形鐵片的有18人.


【解析】設(shè)生產(chǎn)圓形鐵片的工人為 x 人,則生產(chǎn)長(zhǎng)方形鐵片的工人為 42 x 人;根據(jù)題意每個(gè)工人平均每小時(shí)可以生產(chǎn)圓形鐵片120片或者長(zhǎng)方形鐵片80片,列出方程即可.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知一元二次方程x24x50的兩根分別是x1、x2,那么 (1+x1)(1+x2)的值是__

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】下列方程變形正確的是( )
A.方程3x﹣2=2x﹣1移項(xiàng),得3x﹣2x=﹣1﹣2
B.方程3﹣x=2﹣5(x﹣1)去括號(hào),得3﹣x=2﹣5x﹣1
C.方程 可化為3x=6.
D.方程 系數(shù)化為1,得x=﹣1

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖1,等邊△ABC邊長(zhǎng)為6,AD是△ABC的中線,P為線段AD(不包括端點(diǎn)A、D)上一動(dòng)點(diǎn),以CP為一邊且在CP左下方作如圖所示的等邊△CPE,連結(jié)BE.

(1)點(diǎn)P在運(yùn)動(dòng)過(guò)程中,線段BE與AP始終相等嗎?說(shuō)說(shuō)你的理由;
(2)若延長(zhǎng)BE至F,使得CF=CE=5,如圖2,問(wèn):求出此時(shí)AP的長(zhǎng);
(3)當(dāng)點(diǎn)P在線段AD的延長(zhǎng)線上時(shí),F(xiàn)為線段BE上一點(diǎn),使得CF=CE=5.求EF的長(zhǎng)

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖:△ABC中,D點(diǎn)在BC上,現(xiàn)有下列四個(gè)命題:①若AB=AC,則∠B=∠C.②若AB=AC,∠BAD=∠CAD,則AD⊥BC,BD=DC.③若AB=AC,BD=DC,則AD⊥BC,∠BAD=∠CAD.④若AB=AC,AD⊥BC,則BD=DC,∠BAD=∠CAD.其中正確的有(

A.1個(gè)
B.2個(gè)
C.3個(gè)
D.4個(gè)

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】(10分)如圖,O是ABC的外接圓,AB是O的直徑,AB=8.

(1)利用尺規(guī),作CAB的平分線,交O于點(diǎn)D;(保留作圖痕跡,不寫(xiě)作法)

(2)在(1)的條件下,連接CD,OD,若AC=CD,求B的度數(shù);

(3)在(2)的條件下,OD交BC于點(diǎn)E.求出由線段ED,BE,所圍成區(qū)域的面積.(其中表示劣弧,結(jié)果保留π和根號(hào))

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】若點(diǎn)A(﹣2,y1),B(﹣1,y2),C8,y3)都在二次函數(shù)yax2a0)的圖象上,則下列結(jié)論正確的是( 。

A.y1y2y3B.y2y1y3C.y3y1y2D.y1y3y2

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】某車(chē)隊(duì)要把4000噸貨物運(yùn)到雅安地震災(zāi)區(qū)(方案定后,每天的運(yùn)量不變)。
(1)從運(yùn)輸開(kāi)始,每天運(yùn)輸?shù)呢浳飮崝?shù)n(單位:噸)與運(yùn)輸時(shí)間t(單位:天)之間有怎樣的函數(shù)關(guān)系式?
(2)因地震,到災(zāi)區(qū)的道路受阻,實(shí)際每天比原計(jì)劃少運(yùn)20%,則推遲1天完成任務(wù),求原計(jì)劃完成任務(wù)的天數(shù).

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】設(shè)ω是一個(gè)平面圖形,如果用直尺和圓規(guī)經(jīng)過(guò)有限步作圖(簡(jiǎn)稱(chēng)尺規(guī)作圖),畫(huà)出一個(gè)正方形與ω的面積相等(簡(jiǎn)稱(chēng)等積),那么這樣的等積轉(zhuǎn)化稱(chēng)為ω的“化方”.

(1)閱讀填空

如圖①,已知矩形ABCD,延長(zhǎng)AD到E,使DE=DC,以AE為直徑作半圓.延長(zhǎng)CD交半圓于點(diǎn)H,以DH為邊作正方形DFGH,則正方形DFGH與矩形ABCD等積.

理由:連接AH,EH.

∵AE為直徑,∴∠AHE=90°,∴∠HAE+∠HEA=90°.

∵DH⊥AE,∴∠ADH=∠EDH=90°

∴∠HAD+∠AHD=90°

∴∠AHD=∠HED,∴△ADH∽

,即DH2=AD×DE.

又∵DE=DC

∴DH2= ,即正方形DFGH與矩形ABCD等積.

(2)操作實(shí)踐

平行四邊形的“化方”思路是,先把平行四邊形轉(zhuǎn)化為等積的矩形,再把矩形轉(zhuǎn)化為等積的正方形.

如圖②,請(qǐng)用尺規(guī)作圖作出與ABCD等積的矩形(不要求寫(xiě)具體作法,保留作圖痕跡).

(3)解決問(wèn)題三角形的“化方”思路是:先把三角形轉(zhuǎn)化為等積的 (填寫(xiě)圖形名稱(chēng)),再轉(zhuǎn)化為等積的正方形.

如圖③,△ABC的頂點(diǎn)在正方形網(wǎng)格的格點(diǎn)上,請(qǐng)作出與△ABC等積的正方形的一條邊(不要求寫(xiě)具體作法,保留作圖痕跡,不通過(guò)計(jì)算△ABC面積作圖).

(4)拓展探究

n邊形(n>3)的“化方”思路之一是:把n邊形轉(zhuǎn)化為等積的n﹣1邊形,…,直至轉(zhuǎn)化為等積的三角形,從而可以化方.

如圖④,四邊形ABCD的頂點(diǎn)在正方形網(wǎng)格的格點(diǎn)上,請(qǐng)作出與四邊形ABCD等積的三角形(不要求寫(xiě)具體作法,保留作圖痕跡,不通過(guò)計(jì)算四邊形ABCD面積作圖).

查看答案和解析>>

同步練習(xí)冊(cè)答案