(2002•煙臺(tái))如圖,已知AB是⊙O的直徑,AC是⊙O的弦,點(diǎn)D是弧的中點(diǎn),弦DE⊥AB,垂足為點(diǎn)F,DE交AC于點(diǎn)G.
(1)圖中有哪些相等的線段;(要求:不再標(biāo)注其他字母,找結(jié)論的過程中所作的輔助線不能出現(xiàn)在結(jié)論中,不寫推理過程)
(2)若過點(diǎn)E作⊙O的切線ME,交AC延長線于點(diǎn)M(請補(bǔ)完整圖形),試問.ME=MG是否成立?若成立,請證明;若不成立,請說明理由;
(3)在滿足第(2)問的條件下,已知AF=3,F(xiàn)B=,求AG與GM的長.(第(1)問中的結(jié)論可直接利用)

【答案】分析:(1)圖中相等的應(yīng)該有半徑AO=OB,根據(jù)垂徑定理有:AF=EF,=,由于=,因此==,那么如果連接EC,∠DEC=∠ACE,CG=GE,=,那么=,因此DE=AC,于是AG=GD,因此圖中應(yīng)該有5對相等的線段;
(2)可通過角的關(guān)系來判斷邊的關(guān)系,根據(jù)EM是圓O的切線,如果我們連接AD、AE,那么∠GEM=∠EAD,現(xiàn)在的關(guān)鍵是證明∠MGE=∠EAD,因?yàn)椤螹GE=∠EAG+∠DEA,∠DAE=∠EAG+∠DAG,如果要得出∠DAG=∠DEA的話,就能得出∠MGE=∠MEG的結(jié)論,而題中告訴了于=,因此這兩個(gè)角就相等了.由此便可根據(jù)等角對等邊來得出ME=MG;
(3)知道了AF、BF的長也就知道了AB、AC的長,現(xiàn)在AG、AC、AF、AB都在相似三角形AEG和ACB中,那么可根據(jù)這些線段的比例關(guān)系求出AG的長,有了AG的長,AC的長,也就求出了GC的長,下面求MG的長,由(2)知ME=MG,那么根據(jù)切割線定理可得:ME2=MC•MA,而ME=MG,MC=MG-GC,MA=MG+AG,已求得了AG、GC的長,那么將等量關(guān)系中的相等值進(jìn)行置換后可得出MG的長.
解答:解:(1)AO=OB,DF=EF,AC=DE,AG=DG,CG=GE;

(2)ME=MG成立,
證明:連接AD、AE,
=,
∴∠DEA=∠CAD,
∵∠EGM=∠DEA+∠EAM,
∴∠EGM=∠EAM+∠CAD=∠EAD;
∵EM是⊙O的切線,
∴∠GEM=∠EAD,
∴∠EGM=∠GEM,
∴ME=MG;

(3)連接BC,
∵DF⊥AB,AF=3,F(xiàn)B=,
∴DF2=AF•FB=4,
∴DF=2;
由(1)知:AC=DE=2DF=4,
由Rt△ABC∽R(shí)t△AGF,得:
=?AG===
由切割線定理得:EM2=MC•MA,即MG2=(MG-GC)(MG+AG)
∴MG2=[MG-(4-)](MG+
∴MG=
點(diǎn)評(píng):本題主要考查了切線的性質(zhì),相似三角形的性質(zhì)以及圓周角定理,垂徑定理等知識(shí)點(diǎn)的綜合應(yīng)用,根據(jù)圓周角得出弧相等進(jìn)而得出相關(guān)的角相等是解題的關(guān)鍵.
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源:2002年全國中考數(shù)學(xué)試題匯編《二次函數(shù)》(04)(解析版) 題型:解答題

(2002•煙臺(tái))如圖,過點(diǎn)C的直線l∥x軸,拋物線y=ax2+bx+c(a<0)過A(-1,0),C(0,1)兩點(diǎn),且截直線l所得線段CD=
(1)求該拋物線的解析式;
(2)若點(diǎn)M(m,t)(m<0,t>0)在拋物線上,MN∥x軸,且與該拋物線的另一交點(diǎn)為N,問:是否存在實(shí)數(shù)t,使得MN=2AO?如果存在,求出t的值;如果不存在,請說明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:2002年全國中考數(shù)學(xué)試題匯編《反比例函數(shù)》(03)(解析版) 題型:解答題

(2002•煙臺(tái))如圖,點(diǎn)A、B在反比例函數(shù)的圖象上,且點(diǎn)A、B的橫坐標(biāo)分別為a、2a(a>0),AC⊥x軸,垂足為點(diǎn)C,且△AOC的面積為2.
(1)求該反比例函數(shù)的解析式;
(2)若點(diǎn)(-a,y1),(-2a,y2)在該反比例函數(shù)的圖象上,試比較y1與y2的大小;
(3)求△AOB的面積.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:2002年山東省煙臺(tái)市中考數(shù)學(xué)試卷(解析版) 題型:解答題

(2002•煙臺(tái))如圖,過點(diǎn)C的直線l∥x軸,拋物線y=ax2+bx+c(a<0)過A(-1,0),C(0,1)兩點(diǎn),且截直線l所得線段CD=
(1)求該拋物線的解析式;
(2)若點(diǎn)M(m,t)(m<0,t>0)在拋物線上,MN∥x軸,且與該拋物線的另一交點(diǎn)為N,問:是否存在實(shí)數(shù)t,使得MN=2AO?如果存在,求出t的值;如果不存在,請說明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:2002年山東省煙臺(tái)市中考數(shù)學(xué)試卷(解析版) 題型:解答題

(2002•煙臺(tái))如圖,點(diǎn)A、B在反比例函數(shù)的圖象上,且點(diǎn)A、B的橫坐標(biāo)分別為a、2a(a>0),AC⊥x軸,垂足為點(diǎn)C,且△AOC的面積為2.
(1)求該反比例函數(shù)的解析式;
(2)若點(diǎn)(-a,y1),(-2a,y2)在該反比例函數(shù)的圖象上,試比較y1與y2的大小;
(3)求△AOB的面積.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:2002年山東省煙臺(tái)市中考數(shù)學(xué)試卷(解析版) 題型:選擇題

(2002•煙臺(tái))如圖所示,直線l的解析式是( )

A.y=x+2
B.y=-2x+2
C.y=x-2
D.y=-x-2

查看答案和解析>>

同步練習(xí)冊答案