【題目】如圖,將矩形紙片ABCD(AD>AB)折疊,使點(diǎn)C剛好落在線段AD上,且折痕分別與邊BC,AD相交,設(shè)折疊后點(diǎn)C,D的對(duì)應(yīng)點(diǎn)分別為點(diǎn)G,H,折痕分別與邊BC,AD相交于點(diǎn)E,F(xiàn).

(1)判斷四邊形CEGF的形狀,并證明你的結(jié)論;
(2)若AB=3,BC=9,求線段CE的取值范圍.

【答案】
(1)

證明:∵四邊形ABCD是矩形,

∴AD∥BC,

∴∠GFE=∠FEC,

∵圖形翻折后點(diǎn)G與點(diǎn)C重合,EF為折線,

∴∠GEF=∠FEC,

∴∠GFE=∠FEG,

∴GF=GE,

∵圖形翻折后BC與GE完全重合,

∴BE=EC,

∴GF=EC,

∴四邊形CEGF為平行四邊形,

∴四邊形CEGF為菱形


(2)

解:如圖1

當(dāng)F與D重合時(shí),CE取最小值,

由折疊的性質(zhì)得CD=DG,∠CDE=∠GDE=45°,

∵∠ECD=90°,

∴∠DEC=45°=∠CDE,

∴CE=CD=DG,

∵DG∥CE,

∴四邊形CEGD是矩形,

∴CE=CD=AB=3;

如圖2

當(dāng)G與A重合時(shí),CE取最大值,

由折疊的性質(zhì)得AE=CE,

∵∠B=90°,

∴AE2=AB2+BE2,即CE2=32+(9﹣CE)2,

∴CE=5,

∴線段CE的取值范圍3≤CE≤5.


【解析】(1)由四邊形ABCD是矩形,根據(jù)折疊的性質(zhì),易證得△EFG是等腰三角形,即可得GF=EC,又由GF∥EC,即可得四邊形CEGF為平行四邊形,根據(jù)鄰邊相等的平行四邊形是菱形,即可得四邊形BGEF為菱形;(2)如圖1,當(dāng)G與A重合時(shí),CE取最大值,由折疊的性質(zhì)得CD=DG,∠CDE=∠GDE=45°,推出四邊形CEGD是矩形,根據(jù)矩形的性質(zhì)即可得到CE=CD=AB=3;如圖2,當(dāng)F與D重合時(shí),CE取最小值,由折疊的性質(zhì)得AE=CE,根據(jù)勾股定理即可得到結(jié)論.本題考查了翻折變換﹣折疊問題,菱形的判定,線段的最值問題,矩形的性質(zhì),勾股定理,正確的作出圖形是解題的關(guān)鍵.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

【題目】襄陽市文化底蘊(yùn)深厚,旅游資源豐富,古隆中、習(xí)家池、鹿門寺三個(gè)景區(qū)是人們節(jié)假日玩的熱點(diǎn)景區(qū),張老師對(duì)八(1)班學(xué)生“五一”小長假隨父母到這三個(gè)景區(qū)游玩的計(jì)劃做了全面調(diào)查,調(diào)查分四個(gè)類別:A、游三個(gè)景區(qū);B、游兩個(gè)景區(qū);C、游一個(gè)景區(qū);D、不到這三個(gè)景區(qū)游玩.現(xiàn)根據(jù)調(diào)查結(jié)果繪制了不完整的條形統(tǒng)計(jì)圖和扇形統(tǒng)計(jì)圖,請(qǐng)結(jié)合圖中信息解答下列問題:

(1)八(1)班共有學(xué)生人,在扇形統(tǒng)計(jì)圖中,表示“B類別”的扇形的圓心角的度數(shù)為
(2)請(qǐng)將條形統(tǒng)計(jì)圖補(bǔ)充完整;
(3)若張華、李剛兩名同學(xué),各自從三個(gè)景區(qū)中隨機(jī)選一個(gè)作為5月1日游玩的景區(qū),則他們同時(shí)選中古隆中的概率為

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖所示,已知ABC中,D為BC上一點(diǎn),E為ABC外部一點(diǎn),DE交AC于一點(diǎn)O,AC=AE,AD=AB,∠BAC=∠DAE.

(1)求證:△ABC≌△ADE;

(2)若BAD=20°,求CDE的度數(shù).

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,點(diǎn)A從原點(diǎn)出發(fā)沿?cái)?shù)軸向左運(yùn)動(dòng),同時(shí),點(diǎn)B也從原點(diǎn)出發(fā)沿?cái)?shù)軸向右運(yùn)動(dòng).已知點(diǎn)A的速度是1單位長度/秒,點(diǎn)B的速度是點(diǎn)A的速度的4倍(速度單位:單位長度/秒).

(1)求請(qǐng)?jiān)跀?shù)軸上標(biāo)出A、B兩點(diǎn)從原點(diǎn)出發(fā)運(yùn)動(dòng)3秒時(shí)的位置;

(2)若A、B兩點(diǎn)在(1)中的位置,數(shù)軸上是否存在一點(diǎn)P到點(diǎn)A,點(diǎn)B的距離之和為16,并求出此時(shí)點(diǎn)P表示的數(shù);若不存在,請(qǐng)說明理由.

(3)若A、B兩點(diǎn)從(1)中的位置開始,仍以原來的速度同時(shí)沿?cái)?shù)軸向左運(yùn)動(dòng)時(shí),另一點(diǎn)C同時(shí)從B點(diǎn)位置出發(fā)向A點(diǎn)運(yùn)動(dòng),當(dāng)遇到A點(diǎn)后,立即返回向B點(diǎn)運(yùn)動(dòng),遇到B點(diǎn)后又立即返回向A點(diǎn)運(yùn)動(dòng),如此往返,直到B點(diǎn)追上A點(diǎn)時(shí),C點(diǎn)立即停止運(yùn)動(dòng).若點(diǎn)C一直以10單位長度/秒的速度勻速運(yùn)動(dòng),那么點(diǎn)C從開始運(yùn)動(dòng)到停止運(yùn)動(dòng),行駛的路程是多少個(gè)單位長度?

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】20028月在北京召開的國際數(shù)學(xué)家大會(huì)會(huì)標(biāo)取材于我國古代數(shù)學(xué)家趙爽的《勾股圓方圖》,它是由四個(gè)全等的直角三角形與中間的小正方形拼成的一個(gè)大正方形(如圖所示).如果大正方形的面積是13,小正方形的面積是1,直角三角形的較短直角邊為a,較長直角邊為b,那么(a+b)2的值為_____

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】某開發(fā)商進(jìn)行商鋪促銷,廣告上寫著如下條款:

購買商鋪后,都由開發(fā)商代為租賃10年,10年期滿后再由開發(fā)商以比原商鋪標(biāo)價(jià)高20%的價(jià)格進(jìn)行回購,投資者可在以下兩種購鋪方案中做出選擇:

方案一投資者按商鋪標(biāo)價(jià)一次性付清鋪款,每年可以獲得的租金為商鋪標(biāo)價(jià)的5%.

方案二:投資者按商鋪標(biāo)價(jià)的八五折一次性付清鋪款,4年后每年可以獲得的租金為商鋪標(biāo)價(jià)的5%,但要繳納租金的10%作為管理費(fèi)用.

(1)請(qǐng)問:投資者選擇哪種購鋪方案,10年后所獲得的投資收益率更高?為什么?(注:投資收益率=×100%)

(2)(列方程求解)某投資者按方案一購買商鋪,因資金周轉(zhuǎn),決定向銀行貸鋪款的20%并于一年后付清貸款,已知貸款年利率為5%.那么10年后該投資者獲得55.2萬元的收益,問鋪款是多少元?

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】點(diǎn)A在數(shù)軸上對(duì)應(yīng)的數(shù)為﹣3,點(diǎn)B對(duì)應(yīng)的數(shù)為2.

(1)如圖1點(diǎn)C在數(shù)軸上對(duì)應(yīng)的數(shù)為x,且x是方程2x+1=x﹣5的解,在數(shù)軸上是否存在點(diǎn)P使PA+PBBC+AB?若存在,求出點(diǎn)P對(duì)應(yīng)的數(shù);若不存在,說明理由;

(2)如圖2,若P點(diǎn)是B點(diǎn)右側(cè)一點(diǎn),PA的中點(diǎn)為M,NPB的三等分點(diǎn)且靠近于P點(diǎn),當(dāng)PB的右側(cè)運(yùn)動(dòng)時(shí),有兩個(gè)結(jié)論:PMBN的值不變; BN的值不變,其中只有一個(gè)結(jié)論正確,請(qǐng)判斷正確的結(jié)論,并求出其值

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在平面直角坐標(biāo)系中,將△ABO繞點(diǎn)B順時(shí)針旋轉(zhuǎn)到△A1BO1的位置,使點(diǎn)A的對(duì)應(yīng)點(diǎn)A1落在直線y= x上,再將△A1BO1繞點(diǎn)A1順時(shí)針旋轉(zhuǎn)到△A1B1O2的位置,使點(diǎn)O1的對(duì)應(yīng)點(diǎn)O2落在直線y= x上,依次進(jìn)行下去…,若點(diǎn)A的坐標(biāo)是(0,1),點(diǎn)B的坐標(biāo)是( ,1),則點(diǎn)A8的橫坐標(biāo)是

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】對(duì)于一個(gè)矩形ABCD及⊙M給出如下定義:在同一平面內(nèi),如果矩形ABCD的四個(gè)頂點(diǎn)到⊙M上一點(diǎn)的距離相等,那么稱這個(gè)矩形ABCD是⊙M的“伴侶矩形”.如圖,在平面直角坐標(biāo)系xOy中,直線l:y= x﹣3交x軸于點(diǎn)M,⊙M的半徑為2,矩形ABCD沿直線運(yùn)動(dòng)(BD在直線l上),BD=2,AB∥y軸,當(dāng)矩形ABCD是⊙M的“伴侶矩形”時(shí),點(diǎn)C的坐標(biāo)為

查看答案和解析>>

同步練習(xí)冊(cè)答案