【題目】農(nóng)華公司以10千克的價(jià)格收購(gòu)一批農(nóng)產(chǎn)品進(jìn)行銷售,為了得到日銷售量千克與銷售價(jià)格千克之間的關(guān)系,經(jīng)過(guò)市場(chǎng)調(diào)查獲得部分?jǐn)?shù)據(jù)如表:

銷售價(jià)格千克

10

15

20

25

30

日銷售量千克

300

225

150

75

0

請(qǐng)你根據(jù)表中的數(shù)據(jù),用所學(xué)過(guò)的一次函數(shù)、二次函數(shù)、反比例函數(shù)的知識(shí)確定px之間的函數(shù)表達(dá)式;

農(nóng)華公司應(yīng)該如何確定這批農(nóng)產(chǎn)品的銷售價(jià)格,才能使日銷售利潤(rùn)W元最大?

若農(nóng)華公司每銷售1千克這種農(nóng)產(chǎn)品需支出a的相關(guān)費(fèi)用,當(dāng)時(shí),農(nóng)經(jīng)公司的日獲利Q元的最大值為1215元,求a的值日獲利日銷售利潤(rùn)日支出費(fèi)用

【答案】(1) p=-15x+450;

(2)這批農(nóng)產(chǎn)品的銷售價(jià)格為20元/千克時(shí),才能使日銷售利潤(rùn)W元最大,確定方法見(jiàn)解析; (3)2.

【解析】

首先根據(jù)表中的數(shù)據(jù),可猜想yx是一次函數(shù)關(guān)系,任選兩點(diǎn)求表達(dá)式,再驗(yàn)證猜想的正確性;

根據(jù)題意列出日銷售利潤(rùn)w與銷售價(jià)格x之間的函數(shù)關(guān)系式,根據(jù)二次函數(shù)的性質(zhì)確定最大值即可;

根據(jù)題意列出日銷售利潤(rùn)Q與銷售價(jià)格x之間的函數(shù)關(guān)系式,并求得拋物線的對(duì)稱軸,再分兩種情況進(jìn)行討論,依據(jù)二次函數(shù)的性質(zhì)求得a的值.

解:假設(shè)px成一次函數(shù)關(guān)系,設(shè)函數(shù)關(guān)系式為,

,

解得:,

,

檢驗(yàn):當(dāng),;當(dāng),;當(dāng),,符合一次函數(shù)解析式;

設(shè)日銷售利潤(rùn)

當(dāng)時(shí),w有最大值1500元,

故這批農(nóng)產(chǎn)品的銷售價(jià)格定為20元,才能使日銷售利潤(rùn)最大;

日獲利,

,

對(duì)稱軸為

,則當(dāng)時(shí),Q有最大值,

不合題意;

,則當(dāng)時(shí),Q有最大值,

代入,可得

當(dāng)時(shí),

解得,舍去,

綜上所述,a的值為2

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】為了安全,請(qǐng)勿超速.如圖,一條公路建成通車,在某直線路段MN限速60千米/小時(shí),為了檢測(cè)車輛是否超速,在公路MN旁設(shè)立了觀測(cè)點(diǎn)C,從觀測(cè)點(diǎn)C測(cè)得一小車從點(diǎn)A到達(dá)點(diǎn)B行駛了5秒鐘,已知∠CAN=45°,CBN=60°,BC=200米,此車超速了嗎?請(qǐng)說(shuō)明理由.

(參考數(shù)據(jù):≈1.41,≈1.73)

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】RtABC中,AB=AC,BAC=90°,OBC的中點(diǎn)。

(1)寫(xiě)出點(diǎn)OABC的三個(gè)頂點(diǎn)A、B、C的距離的大小關(guān)系并說(shuō)明理由;

(2)如果點(diǎn)M、N分別在線段AB、AC上移動(dòng),在移動(dòng)中保持AN=BM,請(qǐng)判斷OMN的形狀,并證明你的結(jié)論。

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,已知拋物線y=ax2+bx2a≠0)與x軸交于A、B兩點(diǎn),與y軸交于C點(diǎn),直線BD交拋物線于點(diǎn)D,并且D23),tanDBA=

1)求拋物線的解析式;

2)已知點(diǎn)M為拋物線上一動(dòng)點(diǎn),且在第三象限,順次連接點(diǎn)B、M、C、A,求四邊形BMCA面積的最大值;

3)在(2)中四邊形BMCA面積最大的條件下,過(guò)點(diǎn)M作直線平行于y軸,在這條直線上是否存在一個(gè)以Q點(diǎn)為圓心,OQ為半徑且與直線AC相切的圓?若存在,求出圓心Q的坐標(biāo);若不存在,請(qǐng)說(shuō)明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,在正方形ABCD中,點(diǎn)E在對(duì)角線BD上,EFABAD于點(diǎn)F,連接BF

1)如圖1,若AB4,DE,求BF的長(zhǎng);

2)如圖2.連接AE,交BF于點(diǎn)H,若DFHF2,求線段AB的長(zhǎng);

3)如圖3,連接BF,AB3,設(shè)EFx,BEF的面積為S,請(qǐng)用x的表達(dá)式表示S,并求出S的最大值;當(dāng)S取得最大值時(shí),連接CE,線段DB繞點(diǎn)D順時(shí)針旋轉(zhuǎn)30°得到線段DJDJCE交于點(diǎn)K,連接CJ,求證:CJCE

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】在一節(jié)數(shù)學(xué)實(shí)踐活動(dòng)課上,老師拿出三個(gè)邊長(zhǎng)都為5cm 的正方形硬紙板,他向同學(xué)們提出了這樣一個(gè)問(wèn)題:若將三個(gè)正方形紙板不重疊地放在桌面上,用一個(gè)圓形硬紙板將其蓋住,這樣的圓形硬紙板的最小直徑應(yīng)有多大?問(wèn)題提出后,同學(xué)們經(jīng)過(guò)討論,大家覺(jué)得本題實(shí)際上就是求將三個(gè)正方形硬紙板無(wú)重疊地適當(dāng)放置,圓形硬紙板能蓋住時(shí)的最小直徑.老師將同學(xué)們討論過(guò)程中探索出的三種不同擺放類型的圖形畫(huà)在黑板上,如圖所示:

(1)通過(guò)計(jì)算(結(jié)果保留根號(hào)與π).

(Ⅰ)圖①能蓋住三個(gè)正方形所需的圓形硬紙板最小直徑應(yīng)為

(Ⅱ)圖②能蓋住三個(gè)正方形所需的圓形硬紙板最小直徑為

(Ⅲ)圖③能蓋住三個(gè)正方形所需的圓形硬紙板最小直徑為

(2)其實(shí)上面三種放置方法所需的圓形硬紙板的直徑都不是最小的,請(qǐng)你畫(huà)出用圓形硬紙板蓋住三個(gè)正方形時(shí)直徑最小的放置方法,(只要畫(huà)出示意圖,不要求說(shuō)明理由),并求出此時(shí)圓形硬紙板的直徑.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】近年來(lái)霧霾天氣給人們的生活帶來(lái)很大影響,空氣質(zhì)量問(wèn)題倍受人們關(guān)注.某單位計(jì)劃在室內(nèi)安裝空氣凈化裝置,需購(gòu)進(jìn)A、B兩種設(shè)備.每臺(tái)B種設(shè)備價(jià)格比每臺(tái)A種設(shè)備價(jià)格多0.7萬(wàn)元,花3萬(wàn)元購(gòu)買A種設(shè)備和花7.2萬(wàn)元購(gòu)買B種設(shè)備的數(shù)量相同.

(1)A種、B種設(shè)備每臺(tái)各多少萬(wàn)元?

(2)根據(jù)單位實(shí)際情況,需購(gòu)進(jìn)A、B兩種設(shè)備共20臺(tái),總費(fèi)用不高于15萬(wàn)元,求A種設(shè)備至少要購(gòu)買多少臺(tái)?

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,將半徑為2,圓心角為120°的扇形OAB繞點(diǎn)A逆時(shí)針旋轉(zhuǎn)60°,點(diǎn)O,B的對(duì)應(yīng)點(diǎn)分別為O′,B′,連接BB′,則圖中陰影部分的面積是( )

A. B. 2 C. 2 D. 4

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖是某路燈在鉛垂面內(nèi)的示意圖,燈柱AC的高為11米,燈桿AB與燈柱AC的夾角∠A=120°,路燈采用錐形燈罩,在地面上的照射區(qū)域DE長(zhǎng)為18米,從DE兩處測(cè)得路燈B的仰角分別為αβ,且tanα=6,tanβ=,求燈桿AB的長(zhǎng)度.

查看答案和解析>>

同步練習(xí)冊(cè)答案