精英家教網 > 初中數學 > 題目詳情

若方程有一解的值等于(  )

A.        B.      D.      D.

 

【答案】

D

【解析】本題考查的是二元一次方程的解的定義

代入方程中,即可求得的值。

由題意得,,解得,故選D。

 

練習冊系列答案
相關習題

科目:初中數學 來源: 題型:

下列各題中解題方法或說法正確的個數有( 。
(1)用換元法解方程
x
x-1
+
2x-2
x
+3=0,設
x
x-1
=y,則原方程可化為y+
2
y
+3=0;
(2)若x+y=a,x-y=b,求2x2+2y2的值.用配方法求,2x2+2y2=(x+y)2+(x-y)2;
(3)若x2-4x+4+
y-6
=0,求x、y的值.用非負數的和為零解,則原式可以化為(x-2)2+
y-6

=0;
(4)四個全等的任意四邊形的地磚,鋪成一片可以不留空隙.
A、1個B、2個C、3個D、4個

查看答案和解析>>

科目:初中數學 來源:十堰 題型:單選題

下列各題中解題方法或說法正確的個數有( 。
(1)用換元法解方程
x
x-1
+
2x-2
x
+3=0,設
x
x-1
=y,則原方程可化為y+
2
y
+3=0;
(2)若x+y=a,x-y=b,求2x2+2y2的值.用配方法求,2x2+2y2=(x+y)2+(x-y)2
(3)若x2-4x+4+
y-6
=0,求x、y的值.用非負數的和為零解,則原式可以化為(x-2)2+
y-6

=0;
(4)四個全等的任意四邊形的地磚,鋪成一片可以不留空隙.
A.1個B.2個C.3個D.4個

查看答案和解析>>

科目:初中數學 來源:2002年全國中考數學試題匯編《四邊形》(01)(解析版) 題型:選擇題

(2002•十堰)下列各題中解題方法或說法正確的個數有( )
(1)用換元法解方程++3=0,設=y,則原方程可化為y++3=0;
(2)若x+y=a,x-y=b,求2x2+2y2的值.用配方法求,2x2+2y2=(x+y)2+(x-y)2;
(3)若x2-4x+4+=0,求x、y的值.用非負數的和為零解,則原式可以化為(x-2)2+
=0;
(4)四個全等的任意四邊形的地磚,鋪成一片可以不留空隙.
A.1個
B.2個
C.3個
D.4個

查看答案和解析>>

科目:初中數學 來源:2002年全國中考數學試題匯編《分式方程》(01)(解析版) 題型:選擇題

(2002•十堰)下列各題中解題方法或說法正確的個數有( )
(1)用換元法解方程++3=0,設=y,則原方程可化為y++3=0;
(2)若x+y=a,x-y=b,求2x2+2y2的值.用配方法求,2x2+2y2=(x+y)2+(x-y)2
(3)若x2-4x+4+=0,求x、y的值.用非負數的和為零解,則原式可以化為(x-2)2+
=0;
(4)四個全等的任意四邊形的地磚,鋪成一片可以不留空隙.
A.1個
B.2個
C.3個
D.4個

查看答案和解析>>

科目:初中數學 來源:2002年全國中考數學試題匯編《代數式》(02)(解析版) 題型:選擇題

(2002•十堰)下列各題中解題方法或說法正確的個數有( )
(1)用換元法解方程++3=0,設=y,則原方程可化為y++3=0;
(2)若x+y=a,x-y=b,求2x2+2y2的值.用配方法求,2x2+2y2=(x+y)2+(x-y)2;
(3)若x2-4x+4+=0,求x、y的值.用非負數的和為零解,則原式可以化為(x-2)2+
=0;
(4)四個全等的任意四邊形的地磚,鋪成一片可以不留空隙.
A.1個
B.2個
C.3個
D.4個

查看答案和解析>>

同步練習冊答案