(2013•金山區(qū)二模)方程的根是x=   
【答案】分析:本題考查了解分式方程發(fā)能力,公分母為x-1,去分母,轉(zhuǎn)化為整式方程求解.結果要檢驗.
解答:解:去分母,得x2=1,
∴x=1或-1,經(jīng)檢驗:x=-1是原方程的解.
點評:(1)解分式方程的基本思想是“轉(zhuǎn)化思想”,把分式方程轉(zhuǎn)化為整式方程求解.
(2)解分式方程一定注意要驗根.
練習冊系列答案
相關習題

科目:初中數(shù)學 來源: 題型:

(2013•金山區(qū)二模)滿足不等式-2x<8的最小整數(shù)解是( 。

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

(2013•金山區(qū)二模)一位射箭選手在訓練中,五次射箭的成績分別是10,7,8,10,10(單位:環(huán)).這組數(shù)據(jù)的平均數(shù)和眾數(shù)分別是( 。

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

(2013•金山區(qū)二模)在Rt△ABC中,∠C=90°,AC=3,BC=4,CP、CM分別是AB上的高和中線,如果圓A是以點A為圓心,半徑長為2的圓,那么下列判斷正確的是( 。

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

(2013•金山區(qū)二模)計算:|-
2
|=
2
2

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

(2013•金山區(qū)二模)如果關于x的一元二次方程:mx2+x+1=0(m為常數(shù))有兩個實數(shù)根,那么m的取值范圍是
m≤
1
4
且m≠0
m≤
1
4
且m≠0

查看答案和解析>>

同步練習冊答案