【題目】已知直角三角形的兩條直角邊長分別為6和8,則它的外接圓的半徑為___
年級 | 高中課程 | 年級 | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來源: 題型:
【題目】單項(xiàng)式9xmy3與單項(xiàng)式4x2yn是同類項(xiàng),則m+n的值是( )
A. 2 B. 3
C. 4 D. 5
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】等腰△ABC中,AB=AC,∠BAC=120°,AD⊥BC于D,點(diǎn)P是BA延長線上一點(diǎn),點(diǎn)O是線段AD上一點(diǎn),OP=OC,以下結(jié)論:①∠APO=∠DCO; ②∠APO+∠DCO=30°;③△OPC為等邊三角形;④AC=AD+AP;⑤. 其中正確的有( )
A. 2個 B. 3個 C. 4個 D. 5個
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】平面直角坐標(biāo)系中,有A、B、C三點(diǎn),其中A為原點(diǎn),點(diǎn)B和點(diǎn)C的坐標(biāo)分別為(5,0)和(1,2).
(1)證明:△ABC為RT△;
(2)請你在直角坐標(biāo)系中找一點(diǎn)D,使得△ABC與△ABD相似,寫出所有滿足條件的點(diǎn)D的坐標(biāo),并在同一坐標(biāo)系中畫出所有符合要求的三角形;
(3)在第(2)題所作的圖中,連接任意兩個直角三角形(包括△ABC)的直角頂點(diǎn)均可得到一條線段,在連接兩點(diǎn)所得的所有線段中任取一條線段,求取到長度為無理數(shù)的線段的概率.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】△ABC中,AB=AC,∠BAC=120°,點(diǎn)D為AB中點(diǎn),點(diǎn)E在BC邊上,CE=3BE,AE與CD交于點(diǎn)F, 若AF=,則FC的長為________________.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,等邊△ABC的邊AC在x軸上,AC中點(diǎn)O為坐標(biāo)原點(diǎn),已知C(2,0),動點(diǎn)D從A出發(fā)沿線段AB向終點(diǎn)B運(yùn)動,速度為2個單位長度/秒,運(yùn)動時間為t,過點(diǎn)D作DE⊥AC,垂足為E.
(1)當(dāng)OD⊥AB時,求E點(diǎn)坐標(biāo).
(2)過E做EF⊥BC,垂足為F,過F作FG⊥AB,垂足為G,請用含t的式子表示線段DG的長度.
(3)在(2)的條件下,作點(diǎn)C關(guān)于EF的對稱點(diǎn)H,連接HG并延長交直線DE于點(diǎn)Q,當(dāng)t為何值時,HQ=EQ,并求出此時DG的長度.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,正方形ABCD中,點(diǎn)E、F分別在BC、CD上,△AEF是等邊三角形,連接AC交EF于G,下列結(jié)論:①BE=DF,②∠DAF=15°,③AC垂直平分EF,④BE+DF=EF,⑤S△CEF=2S△ABE.其中正確結(jié)論有個.
A. 2 B. 3 C. 4 D. 5
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺 | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com