(2012•本溪)已知,在△ABC中,AB=AC.過A點(diǎn)的直線a從與邊AC重合的位置開始繞點(diǎn)A按順時針方向旋轉(zhuǎn)角θ,直線a交BC邊于點(diǎn)P(點(diǎn)P不與點(diǎn)B、點(diǎn)C重合),△BMN的邊MN始終在直線a上(點(diǎn)M在點(diǎn)N的上方),且BM=BN,連接CN.
(1)當(dāng)∠BAC=∠MBN=90°時,
①如圖a,當(dāng)θ=45°時,∠ANC的度數(shù)為
45°
45°
;
②如圖b,當(dāng)θ≠45°時,①中的結(jié)論是否發(fā)生變化?說明理由;
(2)如圖c,當(dāng)∠BAC=∠MBN≠90°時,請直接寫出∠ANC與∠BAC之間的數(shù)量關(guān)系,不必證明.
分析:(1)①證明四邊形ABNC是正方形,根據(jù)正方形的對角線平分一組對角線即可求解;
②根據(jù)等腰直角三角形的性質(zhì)可得∠BNP=∠ACB,然后證明△BNP和△ACP相似,根據(jù)相似三角形對應(yīng)邊成比例可得
BP
AP
=
PN
PC
,再根據(jù)兩邊對應(yīng)成比例夾角相等可得△ABP和△CNP相似,然后根據(jù)相似三角形對應(yīng)角相等可得∠ANC=∠ABC,從而得解;
(2)根據(jù)等腰三角形的兩底角相等求出∠BNP=∠ACB,然后證明△BNP和△ACP相似,根據(jù)相似三角形對應(yīng)邊成比例可得
BP
AP
=
PN
PC
,再根據(jù)兩邊對應(yīng)成比例夾角相等可得△ABP和△CNP相似,然后根據(jù)相似三角形對應(yīng)角相等可得∠ANC=∠ABC,然后根據(jù)三角形的內(nèi)角和定理列式整理即可得解.
解答:解:(1)①∵∠BAC=90°,θ=45°,
∴AP⊥BC,BP=CP(等腰三角形三線合一),
∴AP=BP(直角三角形斜邊上的中線等于斜邊的一半),
又∵∠MBN=90°,BM=BN,
∴AP=PN(等腰三角形三線合一),
∴AP=PN=BP=PC,且AN⊥BC,
∴四邊形ABNC是正方形,
∴∠ANC=45°;

②當(dāng)θ≠45°時,①中的結(jié)論不發(fā)生變化.
理由如下:∵∠BAC=∠MBN=90°,AB=AC,BM=BN,
∴∠ABC=∠ACB=∠BNP=45°,
又∵∠BPN=∠APC,
∴△BNP∽△ACP,
BP
AP
=
PN
PC
,
又∵∠APB=∠CPN,
∴△ABP∽△CNP,
∴∠ANC=∠ABC=45°;

(2)∠ANC=90°-
1
2
∠BAC.
理由如下:∵∠BAC=∠MBN≠90°,AB=AC,BM=BN,
∴∠ABC=∠ACB=∠BNP=
1
2
(180°-∠BAC),
又∵∠BPN=∠APC,
∴△BNP∽△ACP,
BP
AP
=
PN
PC
,
又∵∠APB=∠CPN,
∴△ABP∽△CNP,
∴∠ANC=∠ABC,
在△ABC中,∠ABC=
1
2
(180°-∠BAC)=90°-
1
2
∠BAC.
點(diǎn)評:本題考查了旋轉(zhuǎn)的性質(zhì),等腰直角三角形的性質(zhì),以及等腰三角形三線合一的性質(zhì),(1)②與(2)中,先根據(jù)兩角對應(yīng)相等,兩三角形相似求出兩邊比值相等,再根據(jù)兩邊對應(yīng)成比例,夾角相等得到另兩個相似三角形是解題的關(guān)鍵.
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

(2012•本溪)已知一元二次方程x2-8x+15=0的兩個解恰好分別是等腰△ABC的底邊長和腰長,則△ABC的周長為(  )

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

(2012•本溪)已知1納米=10-9米,某種微粒的直徑為158納米,用科學(xué)記數(shù)法表示該微粒的直徑為
1.58×10-7
1.58×10-7
米.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

(2012•本溪)某工廠生產(chǎn)某品牌的護(hù)眼燈,并將護(hù)眼燈按質(zhì)量分成15個等級(等級越高,燈的質(zhì)量越好.如:二級產(chǎn)品好于一級產(chǎn)品).若出售這批護(hù)眼燈,一級產(chǎn)品每臺可獲利潤21元,每提高一個等級每臺可多獲利潤1元,工廠每天只能生產(chǎn)同一個等級的護(hù)眼燈,每個等級每天生產(chǎn)的臺數(shù)如下表所示:
等級(x級) 一級 二級 三級
生產(chǎn)量(y臺/天) 78 76 74
(1)已知護(hù)眼燈每天的生產(chǎn)量y(臺)是等級x(級)的一次函數(shù),請直接寫出y與x之間的函數(shù)關(guān)系式:
y=-2x+80
y=-2x+80
;
(2)若工廠將當(dāng)日所生產(chǎn)的護(hù)眼燈全部售出,工廠應(yīng)生產(chǎn)哪一等級的護(hù)眼燈,才能獲得最大利潤?最大利潤是多少?

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

(2012•本溪)如圖,已知拋物線y=ax2+bx+3經(jīng)過點(diǎn)B(-1,0)、C(3,0),交y軸于點(diǎn)A,將線段OB繞點(diǎn)O順時針旋轉(zhuǎn)90°,點(diǎn)B的對應(yīng)點(diǎn)為點(diǎn)M,過點(diǎn)A的直線與x軸交于點(diǎn)D(4,0).直角梯形EFGH的上底EF與線段CD重合,∠FEH=90°,EF∥HG,EF=EH=1.直角梯形EFGH從點(diǎn)D開始,沿射線DA方向勻速運(yùn)動,運(yùn)動的速度為1個長度單位/秒,在運(yùn)動過程中腰FG與直線AD始終重合,設(shè)運(yùn)動時間為t秒.
(1)求此拋物線的解析式;
(2)當(dāng)t為何值時,以M、O、H、E為頂點(diǎn)的四邊形是特殊的平行四邊形;
(3)作點(diǎn)A關(guān)于拋物線對稱軸的對稱點(diǎn)A′,直線HG與對稱軸交于點(diǎn)K,當(dāng)t為何值時,以A、A′、G、K為頂點(diǎn)的四邊形為平行四邊形?請直接寫出符合條件的t值.

查看答案和解析>>

同步練習(xí)冊答案