【題目】 如圖1,在平面直角坐標(biāo)系中,第一象限內(nèi)長方形ABCD,ABy軸,點A是(1,1),點Ca,b),滿足

1)求長方形ABCD的面積;

2)如圖2,長方形ABCD以每秒1個單位長度的速度向右平移,同時點E從原點O出發(fā),沿x軸以每秒2個單位長度的速度向右運動,設(shè)運動時間為t秒.

當(dāng)t=5時,求三角形OMC的面積;

ACED,求t的值.

【答案】18;(2)①4;②3

【解析】

1)由已知得出a=5,b=3,求得C點坐標(biāo),結(jié)合圖象,能找出其它幾點的坐標(biāo),從而能得出長方形ABCD的面積;

2)①拆分三角形,求出各個圖形的面積即可求得;

②過點AAFCD,交x軸于點M,交DE的延長線于點F,根據(jù)平行四邊形的性質(zhì)可得出AF的長度,結(jié)合AM的長度可得出ME為△FAD的中位線,根據(jù)點MA的運動速度可得出關(guān)于t的一元一次方程,解之即可得出結(jié)論.

解:(1)∵

a-5=0b-3=0,即a=5,b=3,

∵四邊形ABCD為長方形,

∴點B1,3),點C5,3),點D5,1),

AB=3-1=2,BC=5-1=4

長方形ABCD的面積為:AB×BC=2×4=8;

2)①將t=5時,線段AC拿出來,放在圖3中,各字母如圖,

∵點A′6,1),點C′103),

OM=6,ON=10,A′M=1,C′N=3MN=ON-OM=4,

∴三角形OA′C′的面積=ONC′N-OMA′M-A′M+C′NMN=15-3-8=4;

即三角形OMC的面積為4;

②過點AAFCD,交x軸于點M,交DE的延長線于點F

如圖4所示,

AFCDACDF,

∴四邊形AFDC為平行四邊形,

AF=CD=2

AM=1

ME為△FAD的中位線,

ME=AD=2,

2t-t+1=2,

解得:t=3

故若ACED,t的值為3秒.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,點從原點出發(fā)沿數(shù)軸向左運動,同時點從原點出發(fā)沿數(shù)軸向右運動,秒鐘后,兩點相距個單位長度,已知點的速度是點A的速度的倍.(速度單位:單位長度/秒)

(1)求出點運動的速度.

(2)若兩點從(1)中位置開始,仍以原來的速度同時沿數(shù)軸向左運動,幾秒時原點恰好處在點的正中間?

(3)若、兩點從(1)中的位置開始,仍以原來的速度同時沿數(shù)軸向左運動時,另一點同時從點位置出發(fā)向點運動,當(dāng)遇到點后,立即返回向點運動,遇到點又立即返回向點運動,如此往返,直到點追上點時,點一直以單位長度/秒的速度運動,那么點從開始運動到停止運動,行駛的路程是多少單位長度.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,直線l1分別與x軸、y軸交于A、B兩點,點Cx軸上任意一點,直線l2經(jīng)過點C,且與直線l1交于點D,與y軸交于點E,連結(jié)AE

(1)當(dāng)點C的坐標(biāo)為時,①求直線l2的函數(shù)表達(dá)式;②求證:AE平分

(2)問:是否存在點C,使是以CE為一腰的等腰三角形?若存在,直接寫出點C的坐標(biāo);若不存在,請說明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】甲騎自行車從M地出發(fā)沿一條公路勻速前往N地,乙騎摩托車從N地出發(fā)沿同一條公路勻速前往M地,

已知乙比甲晚出發(fā)0.5小時且先到達(dá)目的地.設(shè)甲行駛的時間為t(h),甲乙兩人之間的路程為y(km),

yt的函數(shù)關(guān)系如圖1所示,請解決以下問題:

(1)寫出圖1中點C表示的實際意義并求線段BC所在直線的函數(shù)表達(dá)式.

(2)①求點D的縱坐標(biāo).

②求M,N兩地之間的距離.

(3)設(shè)乙離M地的路程為S (km),請直接寫出S 與時間t(h)的函數(shù)表達(dá)式,并在圖2所給的直角坐標(biāo)系中畫出它的圖象.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】已知:如圖,在△ABC中,AB=ACADBC,垂足為點D,AN是△ABC外角∠CAM的平分線,CEAN,垂足為點E

(1)求證:四邊形ADCE為矩形;

(2)當(dāng)△ABC滿足什么條件時,四邊形ADCE是一個正方形?并給出證明.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】某體育用品商場預(yù)測某品牌運動服能夠暢銷,就用32000元購進(jìn)了一批這種運動服,上市后很快脫銷,商場又用68000元購進(jìn)第二批這種運動服,所購數(shù)量是第一批購進(jìn)數(shù)量的2倍,但每套進(jìn)價多了10元.

1)該商場兩次共購進(jìn)這種運動服多少套?

2)如果這兩批運動服每套的售價相同,且全部售完后總利潤不低于20%,那么每套售價至少是多少元?

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】賞中華詩詞,尋文化基因,品生活之美,某校舉辦了首屆中國詩詞大會,經(jīng)選拔后有50名學(xué)生參加決賽,這50名學(xué)生同時默寫50首古詩詞,若每正確默寫出一首古詩詞得2分,根據(jù)測試成績繪制出部分頻數(shù)分布表和部分頻數(shù)分布直方圖如圖表.

請結(jié)合圖表完成下列各題:

1 表中a的值為

把頻數(shù)分布直方圖補(bǔ)充完整;

2)若測試成績不低于80分為優(yōu)秀,則本次測試的優(yōu)秀率是多少?

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】計算:

1a a3a5

2)(x62+x34+x12

3

4(-3a2b3)(-2ab3c)3

5

6(x+2)(x-3)

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,已知AB為⊙O的直徑,AB=8,點C和點D是⊙O上關(guān)于直線AB對稱的兩個點,連接OC、AC,且∠BOC<90°,直線BC和直線AD相交于點E,過點C作直線CG與線段AB的延長線相交于點F,與直線AD相交于點G,且∠GAF=GCE

(1)求證:直線CG為⊙O的切線;

(2)若點H為線段OB上一點,連接CH,滿足CB=CH,

①△CBH∽△OBC

②求OH+HC的最大值

查看答案和解析>>

同步練習(xí)冊答案