【題目】如圖,AB為⊙O的直徑,C為⊙O上一點(diǎn), AD與過(guò)點(diǎn)C的直線互相垂直,垂足為點(diǎn)D,AD交⊙O于點(diǎn)E,AC平分∠DAB,連接CE,CB.
(1)求證:CD是⊙O的切線;
(2)若AC=,CE=,求⊙O的半徑長(zhǎng).
【答案】(1)見(jiàn)解析;(2)3
【解析】
(1)連接OC,利用切線的性質(zhì)和已知條件推知OC∥AD,根據(jù)平行線的性質(zhì)和等角對(duì)等邊證得結(jié)論;
(2)根據(jù)AC平分∠DAB,得到∠1=∠2,再得到CE=CB,根據(jù)勾股定理求出AB即可求解.
(1)證明:連接OC,
∵OA、OC是⊙O的半徑
∴∠2=∠3,
∵AC平分∠DAB
∴∠1=∠2,
∴∠1=∠3,
∴OC∥AD,
又∵AD⊥CD.
∴OC⊥CD
又∵OC是⊙O的半徑
∴CD是⊙O的切線
(2)∵AC平分∠DAB
∴∠1=∠2,
∴CE=CB
又∵AB是直徑,
∴∠ACB=90°,
∵AC=,CE=3,CB=CE=3,
∴AB=.
∴⊙O的半徑=6×=3
答:所求⊙O的半徑長(zhǎng)為3
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】有這樣一個(gè)問(wèn)題:探究函數(shù)y=的圖象與性質(zhì).小美根據(jù)學(xué)習(xí)函數(shù)的經(jīng)驗(yàn),對(duì)函數(shù)y=的圖象與性質(zhì)進(jìn)行了探究下面是小美的探究過(guò)程,請(qǐng)補(bǔ)充完整:
(1)函數(shù)y=的自變量x的取值范圍是 ;
(2)下表是y與x的幾組對(duì)應(yīng)值.
x | -2 | - | -1 | - | 1 | 2 | 3 | 4 | … | ||
y | 0 | - | -1 | - | m | … |
求m的值;
(3)如圖,在平面直角坐標(biāo)系xOy中,描出了以上表中各對(duì)對(duì)應(yīng)值為坐標(biāo)的點(diǎn).根據(jù)描出的點(diǎn),畫(huà)出該函數(shù)的圖象;
(4)結(jié)合函數(shù)的圖象,寫(xiě)出該函數(shù)的一條性質(zhì): .
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】在正方形ABCD中,點(diǎn)H,E,F分別在邊AB,BC,CD上,AE⊥HF于點(diǎn)G.
(1)如圖1,求證:AE=HF;
(2)如圖2,延長(zhǎng)FH,交CB的延長(zhǎng)線于M,連接AC,交HF于N.若MB=BE,EC=2BE,求的值;
(3)如圖3,若AB=2,BH=DF,將線段HF繞點(diǎn)F順時(shí)針旋轉(zhuǎn)90°至線段MF,連接AM,則線段AM的最小值為 .(直接寫(xiě)出結(jié)果)
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,已知正方形ABCD的邊長(zhǎng)是5,點(diǎn)O在AD上,且⊙O的直徑是4.
(1)正方形的對(duì)角線BD與半圓O交于點(diǎn)F,求陰影部分的面積;
(2)利用圖判斷,半圓O與AC有沒(méi)有公共點(diǎn),說(shuō)明理由.(提示:≈1.41)
(3)將半圓O以點(diǎn)E為中心,順時(shí)針?lè)较蛐D(zhuǎn).
①旋轉(zhuǎn)過(guò)程中,△BOC的最小面積是 ;
②當(dāng)半圓O過(guò)點(diǎn)A時(shí),半圓O位于正方形以外部分的面積是 .
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】先閱讀下列材料,然后解答問(wèn)題.
材料:從三角形不是等腰三角形一個(gè)頂點(diǎn)引出一條射線與對(duì)邊相交,頂點(diǎn)與交點(diǎn)之間的線段把這個(gè)三角形分割成兩個(gè)小三角形,如果分得的兩個(gè)小三角形中一個(gè)為等腰三角形,另一個(gè)與原三角形相似,我們把這條線段叫做這個(gè)三角形的完美分割線.
例如:如圖,AD把分成與,若是等腰三角形,且∽,那么AD就是的完美分割線.
解答下列問(wèn)題:
如圖,在中,若∠B=40°,AD是的完美分割線,且是以AD為底邊的等腰三角形,則____度;
在中,若,,AD是的完美分割線,是等腰三角形,則____;
如圖,在中,AD平分,求證AD是的完美分割線.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】為滿足市場(chǎng)需求,某超市在五月初五“端午節(jié)”來(lái)臨前夕,購(gòu)進(jìn)一種品牌
粽子,每盒進(jìn)價(jià)是40元,超市規(guī)定每盒售價(jià)不得少于45元.根據(jù)以往銷(xiāo)售經(jīng)驗(yàn)發(fā)現(xiàn):當(dāng)售價(jià)定為每盒45元時(shí),每天可賣(mài)出700盒,每盒售價(jià)每提高1元,每天要少賣(mài)出20盒.
(1)試求出每天的銷(xiāo)售量y(盒)與每盒售價(jià) (元)之間的函數(shù)關(guān)系式;(4分)
(2)當(dāng)每盒售價(jià)定為多少元時(shí),每天銷(xiāo)售的利潤(rùn) (元)最大?最大利潤(rùn)是多少?(6分)
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知關(guān)于x的一元二次方程x2+(2k-1)x+k2=0有兩個(gè)實(shí)根x1和x2
(1) 求實(shí)數(shù)k的取值范圍
(2) 若方程兩實(shí)根x1、x2滿足x12-x22=0,求k的值
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】我市茶葉專(zhuān)賣(mài)店銷(xiāo)售某品牌茶葉,其進(jìn)價(jià)為每千克240元,按每千克400元出售,平均每周可售出200千克,后來(lái)經(jīng)過(guò)市場(chǎng)調(diào)查發(fā)現(xiàn),單價(jià)每降低10元,則平均每周的銷(xiāo)售量可增加40千克,若該專(zhuān)賣(mài)店銷(xiāo)售這種品牌茶葉要想平均每周獲利41600元,求每千克茶葉應(yīng)降價(jià)多少元?
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,二次函數(shù)y=﹣x2+2x+m的圖象過(guò)點(diǎn)A(3,0),與y軸交于點(diǎn)B,直線AB與這個(gè)二次函數(shù)圖象的對(duì)稱(chēng)軸交于點(diǎn)P.
(1)求點(diǎn)B的坐標(biāo);
(2)求點(diǎn)P的坐標(biāo).
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專(zhuān)區(qū) | 電信詐騙舉報(bào)專(zhuān)區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專(zhuān)區(qū) | 涉企侵權(quán)舉報(bào)專(zhuān)區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com