【題目】如圖,AB為⊙O的直徑,C為⊙O上一點(diǎn), AD與過(guò)點(diǎn)C的直線互相垂直,垂足為點(diǎn)D,AD交⊙O于點(diǎn)E,AC平分∠DAB,連接CE,CB

1)求證:CD是⊙O的切線;

2)若AC,CE,求⊙O的半徑長(zhǎng).

【答案】1)見(jiàn)解析;(23

【解析】

1)連接OC,利用切線的性質(zhì)和已知條件推知OCAD,根據(jù)平行線的性質(zhì)和等角對(duì)等邊證得結(jié)論;

2)根據(jù)AC平分∠DAB,得到∠1=∠2,再得到CE=CB,根據(jù)勾股定理求出AB即可求解.

1)證明:連接OC,

OA、OC是⊙O的半徑

∴∠2=∠3,

AC平分∠DAB

∴∠1=∠2,

∴∠1=∠3

OCAD,

又∵ADCD

OCCD

又∵OC是⊙O的半徑

CD是⊙O的切線

2)∵AC平分∠DAB

∴∠1=∠2,

CE=CB

又∵AB是直徑,

∴∠ACB90°,

ACCE3,CBCE3,

AB

∴⊙O的半徑=6×=3

答:所求⊙O的半徑長(zhǎng)為3

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】有這樣一個(gè)問(wèn)題:探究函數(shù)y=的圖象與性質(zhì).小美根據(jù)學(xué)習(xí)函數(shù)的經(jīng)驗(yàn),對(duì)函數(shù)y=的圖象與性質(zhì)進(jìn)行了探究下面是小美的探究過(guò)程,請(qǐng)補(bǔ)充完整:

(1)函數(shù)y=的自變量x的取值范圍是 ;

(2)下表是y與x的幾組對(duì)應(yīng)值.

x

-2

-1

1

2

3

4

y

0

-1

m

求m的值;

(3)如圖,在平面直角坐標(biāo)系xOy中,描出了以上表中各對(duì)對(duì)應(yīng)值為坐標(biāo)的點(diǎn).根據(jù)描出的點(diǎn),畫(huà)出該函數(shù)的圖象;

(4)結(jié)合函數(shù)的圖象,寫(xiě)出該函數(shù)的一條性質(zhì): .

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】在正方形ABCD中,點(diǎn)H,E,F分別在邊AB,BC,CD上,AEHF于點(diǎn)G

1)如圖1,求證:AEHF;

2)如圖2,延長(zhǎng)FH,交CB的延長(zhǎng)線于M,連接AC,交HFN.若MBBE,EC2BE,求的值;

3)如圖3,若AB2,BHDF,將線段HF繞點(diǎn)F順時(shí)針旋轉(zhuǎn)90°至線段MF,連接AM,則線段AM的最小值為   .(直接寫(xiě)出結(jié)果)

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,已知正方形ABCD的邊長(zhǎng)是5,點(diǎn)OAD上,且⊙O的直徑是4

(1)正方形的對(duì)角線BD與半圓O交于點(diǎn)F,求陰影部分的面積;

(2)利用圖判斷,半圓OAC有沒(méi)有公共點(diǎn),說(shuō)明理由.(提示:1.41)

(3)將半圓O以點(diǎn)E為中心,順時(shí)針?lè)较蛐D(zhuǎn).

旋轉(zhuǎn)過(guò)程中,△BOC的最小面積是  

當(dāng)半圓O過(guò)點(diǎn)A時(shí),半圓O位于正方形以外部分的面積是   

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】先閱讀下列材料,然后解答問(wèn)題.

材料:從三角形不是等腰三角形一個(gè)頂點(diǎn)引出一條射線與對(duì)邊相交,頂點(diǎn)與交點(diǎn)之間的線段把這個(gè)三角形分割成兩個(gè)小三角形,如果分得的兩個(gè)小三角形中一個(gè)為等腰三角形,另一個(gè)與原三角形相似,我們把這條線段叫做這個(gè)三角形的完美分割線.

例如:如圖,AD分成,是等腰三角形,,那么AD就是的完美分割線.

解答下列問(wèn)題:

如圖,,∠B=40°,AD的完美分割線,是以AD為底邊的等腰三角形,____度;

,,,AD的完美分割線,是等腰三角形,____;

如圖,,AD平分,求證AD的完美分割線.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】為滿足市場(chǎng)需求某超市在五月初五“端午節(jié)”來(lái)臨前夕,購(gòu)進(jìn)一種品牌

粽子每盒進(jìn)價(jià)是40元,超市規(guī)定每盒售價(jià)不得少于45元根據(jù)以往銷(xiāo)售經(jīng)驗(yàn)發(fā)現(xiàn):當(dāng)售價(jià)定為每盒45元時(shí)每天可賣(mài)出700盒,每盒售價(jià)每提高1元每天要少賣(mài)出20盒

1試求出每天的銷(xiāo)售量y與每盒售價(jià)之間的函數(shù)關(guān)系式;4分

2當(dāng)每盒售價(jià)定為多少元時(shí),每天銷(xiāo)售的利潤(rùn)最大?最大利潤(rùn)是多少?6分

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知關(guān)于x的一元二次方程x2+(2k-1)x+k2=0有兩個(gè)實(shí)根x1x2

(1) 求實(shí)數(shù)k的取值范圍

(2) 若方程兩實(shí)根x1、x2滿足x12-x22=0,求k的值

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】我市茶葉專(zhuān)賣(mài)店銷(xiāo)售某品牌茶葉,其進(jìn)價(jià)為每千克240元,按每千克400元出售,平均每周可售出200千克,后來(lái)經(jīng)過(guò)市場(chǎng)調(diào)查發(fā)現(xiàn),單價(jià)每降低10元,則平均每周的銷(xiāo)售量可增加40千克,若該專(zhuān)賣(mài)店銷(xiāo)售這種品牌茶葉要想平均每周獲利41600元,求每千克茶葉應(yīng)降價(jià)多少元?

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,二次函數(shù)y=x2+2x+m的圖象過(guò)點(diǎn)A(3,0),與y軸交于點(diǎn)B,直線AB與這個(gè)二次函數(shù)圖象的對(duì)稱(chēng)軸交于點(diǎn)P

(1)求點(diǎn)B的坐標(biāo);

(2)求點(diǎn)P的坐標(biāo).

查看答案和解析>>

同步練習(xí)冊(cè)答案