精英家教網 > 初中數學 > 題目詳情

【題目】如圖1,小軍有一張RtABC紙片,其中∠A30°,AB12cm.他先將該紙片沿BD折疊,使點C剛好落在斜邊AB上的一點C′處.然后沿DC′剪開得到雙層△BDC′(如圖2).小軍想把雙層△BDC′沿某直線再剪開一次,使展開后的兩個平面圖形中其中一個是平行四邊形,則他能得到的平行四邊形的最大面積可為____cm2

【答案】6

【解析】

解直角三角形求出CD的長,如圖,把雙層BDC′沿直線CEEBD中點)再剪開一次,可以得到平行四邊形DECE′,此時平行四邊形的面積的最大.

RtABC中,∵∠A30°,AB12cm,

BCAB6cm),

由翻折不變性可知:∠CBD=∠DBC30°,

CDBCtan30°2cm),

如圖,把雙層BDC沿直線CEEBD中點)再剪開一次,可以得到平行四邊形DECE,此時平行四邊形的面積的最大值=×226cm2

故答案為6

練習冊系列答案
相關習題

科目:初中數學 來源: 題型:

【題目】如圖,已知AB是⊙O的直徑,F是⊙O上一點,∠BAF的平分線交⊙O于點E,交⊙O的切線BC于點C,過點EEDAF,交AF的延長線于點D

(1)求證:DE是⊙O的切線;

(2)若DE=3,CE=2,

①求值;

②若點GAE上一點,求OG+EG最小值.

查看答案和解析>>

科目:初中數學 來源: 題型:

【題目】某校有3000名學生.為了解全校學生的上學方式,該校數學興趣小組以問卷調查的形式,隨機調查了該校部分學生的主要上學方式(參與問卷調查的學生只能從以下六個種類中選擇一類),并將調查結果繪制成如下不完整的統(tǒng)計圖.

種類

A

B

C

D

E

F

上學方式

電動車

私家車

公共交通

自行車

步行

其他

某校部分學生主要上學方式扇形統(tǒng)計圖某校部分學生主要上學方式條形統(tǒng)計圖

根據以上信息,回答下列問題:

(1)參與本次問卷調查的學生共有____人,其中選擇B類的人數有____人.

(2)在扇形統(tǒng)計圖中,求E類對應的扇形圓心角α的度數,并補全條形統(tǒng)計圖.

(3)若將A、CD、E這四類上學方式視為綠色出行,請估計該校每天綠色出行的學生人數.

查看答案和解析>>

科目:初中數學 來源: 題型:

【題目】某圖書館計劃選購甲、乙兩種圖書.已知甲圖書每本價格是乙圖書每本價格的2.5倍,用800元單獨購買甲圖書比用800元單獨購買乙圖書要少24本.

(1)甲、乙兩種圖書每本價格分別為多少元?

(2)如果該圖書館計劃購買乙圖書的本數比購買甲圖書本數的2倍多8本,且用于購買甲、乙兩種圖書的總經費不超過1060元,那么該圖書館最多可以購買多少本乙圖書?

查看答案和解析>>

科目:初中數學 來源: 題型:

【題目】某企業(yè)有員工300人生產A種產品,平均每人每年可創(chuàng)造利潤m萬元(m為大于零的常數).為減員增效,決定從中調配x人去生產新開發(fā)的B種產品.根據評估,調配后繼續(xù)生產A種產品的員工平均每人每年創(chuàng)造的利潤可增加20%,生產B種產品的員工平均每人每年可創(chuàng)造利潤1.54m萬元.

1)調配后企業(yè)生產A種產品的年利潤為   萬元,生產B種產品的年利潤為   萬元(用含m的代數式表示).若設調配后企業(yè)全年的總利潤為y萬元,則y關于x的關系式為   ;

2)若要求調配后企業(yè)生產A種產品的年利潤不少于調配前企業(yè)年利潤的五分之四,生產B種產品的年利潤大于調配前企業(yè)年利潤的一半,應有哪幾種調配方案?請設計出來,并指出其中哪種方案全年總利潤最大(必要時運算過程可保留3個有效數字).

3)企業(yè)決定將(2)中的年最大總利潤(m2)繼續(xù)投資開發(fā)新產品,現有六種產品可供選擇(不得重復投資同一種產品),各產品所需資金以及所獲利潤如下表:

產 品

C

D

E

F

G

H

所需資金(萬元)

200

348

240

288

240

500

年 利 潤(萬元)

50

80

20

60

40

85

如果你是企業(yè)決策者,為使此項投資所獲年利潤不少于145萬元,你可以投資開發(fā)哪些產品?請你寫出兩種投資方案.

查看答案和解析>>

科目:初中數學 來源: 題型:

【題目】在△ABC和△ADE中,BABC,DADE,且∠ABC=∠ADE,點E在△ABC的內部,連接ECEBED,設ECkBDk0).

1)當∠ABC=∠ADE60°時,如圖1,請求出k值,并給予證明;

2)當∠ABC=∠ADE90°時:

如圖2,(1)中的k值是否發(fā)生變化,如無變化,請給予證明;如有變化,請求出k值并說明理由;

如圖3,當D,E,C三點共線,且EDC中點時,請求出tanEAC的值.

查看答案和解析>>

科目:初中數學 來源: 題型:

【題目】如圖,ABC內接于⊙O,CBG=A,CD為直徑,OCAB相交于點E,過點EEFBC,垂足為F,延長CDGB的延長線于點P,連接BD.

(1)求證:PG與⊙O相切;

(2)若=,求的值;

(3)在(2)的條件下,若⊙O的半徑為8,PD=OD,求OE的長.

查看答案和解析>>

科目:初中數學 來源: 題型:

【題目】(1)如圖,已知線段,請在給出的圖形上用尺規(guī)作出,使得:點在射線上,點在射線上,且;(保留作圖痕跡,不寫作法)

(2)求證:直角三角形斜邊上的中線等于斜邊的一半.(要求:利用(1)中的Rt,畫出斜邊上的中線,寫出已知、求證和證明過程)

查看答案和解析>>

科目:初中數學 來源: 題型:

【題目】如圖,在正方形ABCD外取一點E,連接AE、BE、DE.過點AAE的垂線交DE于點P.若AE=AP=1,PB=.下列結論:①△APD≌△AEB;②B到直線AE的距離為;③EBED;④SAPD+SAPB=1+;⑤S正方形ABCD=4+.其中正確結論的序號是

查看答案和解析>>

同步練習冊答案