【題目】如圖,△ABC中,∠BAC=60°,
(1)如果△ABC角平分線BD、CE相交與點O,則∠BOC_________。
(2)如果△ABC的高BD、CE相交與點O,求∠BOC的度數(shù)。
【答案】(1)=120;(2)∠BOC =120°.
【解析】
(1)根據(jù)三角形內角和定理和角平分線定義求出∠OBC+∠OCB的度數(shù),然后在△BOC中通過三角形內角和定理可求出∠BOC的度數(shù);
(2)由高線的定義可知∠AEC=90°,∠ADB=90°,然后根據(jù)四邊形內角和定理可求出∠DOE,問題得解.
解(1)如圖1,
∵∠BAC=60°,
∴∠ABC+∠ACB=180°-∠BAC=120°,
∵BD、CE分別是∠ABC,∠ACB的角平分線,
∴∠OBC=∠ABC,∠OCB=∠ACB,
∴∠OBC+∠OCB=∠ABC+∠ACB=(∠ACB+∠ACB)=60°,
∴∠BOC=180°-(∠OBC+∠OCB)=120°;
(2)如圖2,
∵∠BAC=60°,BD、CE是△ABC的高線,
∴∠AEC=90°,∠ADB=90°,
∴∠DOE=360°-∠BAC-∠AEC-∠ADB=360°-60°-90°-90°=120°,
∴∠BOC=∠DOE=120°.
科目:初中數(shù)學 來源: 題型:
【題目】已知:如圖,反比例函數(shù)y= 的圖象與一次函數(shù)y=x+b的圖象交
于點A(1,4)、點B(-4,n).
(1)求一次函數(shù)和反比例函數(shù)的解析式;
(2)求△OAB的面積;
(3)直接寫出一次函數(shù)值大于反比例函數(shù)值的自變量x的取值范圍.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】某公交公司決定更換節(jié)能環(huán)保的新型公交車購買的數(shù)量和所需費用如下表所示:
A型數(shù)量輛 | B型數(shù)量輛 | 所需費用萬元 |
3 | 1 | 450 |
2 | 3 | 650 |
求A型和B型公交車的單價;
該公司計劃購買A型和B型兩種公交車共10輛,已知每輛A型公交車年均載客量為60萬人次,每輛B型公交車年均載客量為100萬人次,若要確保這10輛公交車年均載客量總和不少于670萬人次,則A型公交車最多可以購買多少輛?
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,在平面直角坐標系中,半徑均為1個單位長度的半圓O1,O2,O3,… 組成一條平滑的曲線,點P從原點O出發(fā),沿這條曲線向右運動,速度為每秒個單位長度,則第2019秒時,點P的坐標是________________
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】已知:如圖,在正方形外取一點,連接、、.過點作的垂線交于點.若,.下列結論:①;②點到直線的距離為;③;④;⑤;其中正確結論的序號是( )
A.①③④B.①②⑤C.③④⑤D.①③⑤
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】我們給出如下定義:若一個四邊形中存在相鄰兩邊的平方和等于一條對角線的平方,則稱這個四邊形為勾股四邊形,這兩條相鄰的邊稱為這個四邊形的勾股邊.
(1)如圖,已知格點(小正方形的頂點):、、,若為格點,請直接畫出所有以、為勾股邊且對角線相等的勾股四邊形;
(2)如圖,將繞頂點按順時針方向旋轉,得到,連結、,,求證:,即四邊形是勾股四邊形;
(3)如圖,在四邊形中,為等邊三角形,,,,求長.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖①,將一副直角三角板放在同一條直線AB上,其中∠ONM=30°,∠OCD=45°.
(1)將圖①中的三角板OMN沿BA的方向平移至圖②的位置,MN與CD相交于點E,求∠CEN的度數(shù);
(2)將圖①中的三角板OMN繞點O按逆時針方向旋轉,使∠BON=30°,如圖③,MN與CD相交于點E,求∠CEN的度數(shù);
(3)將圖①中的三角板OMN繞點O按每秒30°的速度按逆時針方向旋轉一周,在旋轉的過程中,在第____________秒時,直線MN恰好與直線CD垂直.(直接寫出結果)
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,△ABC的頂點坐標分別為A(0,1)、B(3,3)、C(1,3).
(1) 畫出△ABC關于點O的中心對稱圖形△A1B1C1
(2) 畫出△ABC繞原點O逆時針旋轉90°的△A2B2C2,直接寫出點C2的坐標為______.
(3) 若△ABC內一點P(m,n)繞原點O逆時針旋轉90°的對應點為Q,則Q的坐標為______.
查看答案和解析>>
湖北省互聯(lián)網違法和不良信息舉報平臺 | 網上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com