已知四個數(shù)據(jù)的和為33,其中一個數(shù)據(jù)為12,那么其余三個數(shù)據(jù)的平均數(shù)為
 
分析:根據(jù)平均數(shù)的概念,求解即可.
解答:解:先計算其余三個數(shù)據(jù)的和為33-12=21,故這三個數(shù)據(jù)的平均數(shù)為
21
3
=7.
故答案為7.
點評:本題考查了平均數(shù)的定義.平均數(shù)等于所有數(shù)據(jù)的和除以數(shù)據(jù)的個數(shù).
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:閱讀理解

在一節(jié)數(shù)學(xué)實踐活動課上,呂老師手拿著三個正方形硬紙板和幾個不同的圓形的盤子,他向同學(xué)們提出了這樣一個問題:已知手中圓盤的直徑為13cm,手中的三個正方形硬紙板的邊長均為5cm,若將三個正方形紙板不重疊地放在桌面上,能否用這個圓盤將其蓋。繂栴}提出后,同學(xué)們七嘴八舌,經(jīng)過討論,大家得出了一致性的結(jié)論是:本題實際上是求在不同情況下將三個正方形硬紙板無重疊地適當(dāng)放置,圓盤能蓋住時的最小直徑.然后將各種情形下的直徑值與13cm進(jìn)行比較,若小于或等于13cm就能蓋住,反之,則不能蓋住.呂老師把同學(xué)們探索性畫出的四類圖形畫在黑板上,如下圖所示.
精英家教網(wǎng)
(1)通過計算,在①中圓盤剛好能蓋住正方形紙板的最小直徑應(yīng)為
 
cm.(填準(zhǔn)確數(shù))
(2)圖②能蓋住三個正方形硬紙板所需的圓盤最小直徑為
 
cm圖③能蓋住三個正方形硬紙板所需的圓盤最小直徑為
 
cm?(結(jié)果填準(zhǔn)確數(shù))
(3)按④中的放置,考慮到圖形的軸對稱性,當(dāng)圓心O落在GH邊上時,此時圓盤的直徑最。埬銓懗鲈摲N情況下求圓盤最小直徑的過程.(計算中可能用到的數(shù)據(jù),為了計算方便,本問在計算過程中,根據(jù)實際情況最后的結(jié)果可對個別數(shù)據(jù)取整數(shù))
(4)由(1)(2)(3)的計算可知:A.該圓盤能蓋住三個正方形硬紙板,B.該圓盤不能蓋住三個正方形硬紙板.你的結(jié)論是
 
.(填序號)

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

已知五個數(shù)據(jù)中的一個數(shù)是15,另外的四個數(shù)的平均數(shù)為14,那么這五個數(shù)的和為
71
71

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:填空題

已知四個數(shù)據(jù)的和為33,其中一個數(shù)據(jù)為12,那么其余三個數(shù)據(jù)的平均數(shù)為________.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:不詳 題型:解答題

在一節(jié)數(shù)學(xué)實踐活動課上,呂老師手拿著三個正方形硬紙板和幾個不同的圓形的盤子,他向同學(xué)們提出了這樣一個問題:已知手中圓盤的直徑為13cm,手中的三個正方形硬紙板的邊長均為5cm,若將三個正方形紙板不重疊地放在桌面上,能否用這個圓盤將其蓋?問題提出后,同學(xué)們七嘴八舌,經(jīng)過討論,大家得出了一致性的結(jié)論是:本題實際上是求在不同情況下將三個正方形硬紙板無重疊地適當(dāng)放置,圓盤能蓋住時的最小直徑.然后將各種情形下的直徑值與13cm進(jìn)行比較,若小于或等于13cm就能蓋住,反之,則不能蓋。畢卫蠋煱淹瑢W(xué)們探索性畫出的四類圖形畫在黑板上,如下圖所示.

精英家教網(wǎng)

(1)通過計算,在①中圓盤剛好能蓋住正方形紙板的最小直徑應(yīng)為______cm.(填準(zhǔn)確數(shù))
(2)圖②能蓋住三個正方形硬紙板所需的圓盤最小直徑為______cm圖③能蓋住三個正方形硬紙板所需的圓盤最小直徑為______cm?(結(jié)果填準(zhǔn)確數(shù))
(3)按④中的放置,考慮到圖形的軸對稱性,當(dāng)圓心O落在GH邊上時,此時圓盤的直徑最。埬銓懗鲈摲N情況下求圓盤最小直徑的過程.(計算中可能用到的數(shù)據(jù),為了計算方便,本問在計算過程中,根據(jù)實際情況最后的結(jié)果可對個別數(shù)據(jù)取整數(shù))
(4)由(1)(2)(3)的計算可知:A.該圓盤能蓋住三個正方形硬紙板,B.該圓盤不能蓋住三個正方形硬紙板.你的結(jié)論是______.(填序號)

查看答案和解析>>

同步練習(xí)冊答案