?ABCD中,O是對(duì)角線的交點(diǎn),不能判定這個(gè)平行四邊形是正方形的是( )
A.∠BAD=90°,AB=AD
B.∠BAD=90°,AC⊥BD
C.AC⊥BD,AC=BD
D.AB=AC,∠BAD=∠BCD
【答案】分析:根據(jù)正方形的判定:對(duì)角線互相垂直平分且相等的四邊形是正方形進(jìn)行分析從而得到最后的答案.
解答:解:A:根據(jù)AB=AD可得出平行四邊形是菱形,再利用∠BAD=90°,能判定為正方形,故此選項(xiàng)不符合題意;
B:根據(jù)AC⊥BD可得出平行四邊形是菱形,再利用∠BAD=90°,能判定為正方形,故此選項(xiàng)不符合題意;
C:根據(jù)AC⊥BD可得出平行四邊形是菱形,再利用AC=BD,能判定為正方形,故此選項(xiàng)不符合題意;
D:根據(jù)AB=AD可得出平行四邊形是菱形,∠BAD=∠BCD是所有平行四邊形具有的性質(zhì),故不能判定是正方形,故此選項(xiàng)符合題意;
故選:D.
點(diǎn)評(píng):本題是考查了正方形的判定,判別一個(gè)四邊形為正方形主要根據(jù)正方形的概念,途經(jīng)有兩種:①先說(shuō)明它是矩形,再說(shuō)明有一組鄰邊相等;②先說(shuō)明它是菱形,再說(shuō)明它有一個(gè)角為直角.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來(lái)源: 題型:

12、如圖,在?ABCD中,F(xiàn)是AD延長(zhǎng)線上一點(diǎn),連接BF交DC于點(diǎn)E,則圖中的位似三角形共有
3
對(duì).

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

精英家教網(wǎng)如圖,四邊形ABCD中,M是AC上一點(diǎn),若∠ADM=∠BDC,
AD
DM
=
BD
CD

(1)寫出圖中相似三角形(寫兩對(duì)),對(duì)其中的一對(duì)加以說(shuō)明.
(2)寫出與∠DAB相等的角.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

13、如圖,長(zhǎng)方形ABCD中,E是CD中點(diǎn),則圖中形狀和大小都相同的三角形共有
15
對(duì).

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

已知在△ABC中,AB=AC=6,且△ABC的面積是12.
(1)①在圖1中,求BD的長(zhǎng).②在圖2中,P是BC的中點(diǎn),求PM+PN.
(2)圖3中,對(duì)于BC邊上任意一點(diǎn)P,請(qǐng)對(duì)點(diǎn)P到兩腰距離和(PM+PN)與腰上高(CQ)的大小關(guān)系提出猜想,并加以證明.
(3)如圖4,在矩形ABCD中,P是CD邊任意一點(diǎn),AD=3,CD=4,請(qǐng)直接寫出P到BD、AC的距離和PM+PN.
精英家教網(wǎng)

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

如圖,平行四邊形ABCD中,E是BC邊延長(zhǎng)線上一點(diǎn),AE交CD于F,則圖中相似三角形有
4
4
對(duì).

查看答案和解析>>

同步練習(xí)冊(cè)答案