【題目】如圖,圖①是某電腦液晶顯示器的側(cè)面圖,顯示屏AO可以繞點(diǎn)O旋轉(zhuǎn)一定的角度.研究表明:顯示屏頂端A與底座B的連線AB與水平線BC垂直時(shí)(如圖②),人觀看屏幕最舒適.此時(shí)測得∠BAO=15°,AO=30cm,∠OBC=45°,求AB的長度.(結(jié)果精確到1 cm)(參考數(shù)據(jù):sin15°≈0.26,cos15°≈0.97, tan15°≈0.27, ≈1.414)
【答案】解:過O點(diǎn)作OD⊥AB交AB于D點(diǎn).
在Rt△ADO中,
∵∠A=15°,AO=30,
∴OD=AOsin15°≈30×0.26=7.8(cm)
AD=AOcos15°≈30×0.97=29.1(cm)
又∵在Rt△BDO中,∠OBC=45°,
∴BD=OD=7.8(cm),
∴AB=AD+BD≈36.9(cm).
答:AB的長度為36.9cm.
【解析】根據(jù)角的度數(shù),以及提供的數(shù)據(jù)構(gòu)造直角三角形過O點(diǎn)作OD⊥AB交AB于D點(diǎn),則AB=AD+BD=AD+OD,即要求出AD和OD,在Rt△BDO中,∠A=15°,AO=30,可求得AD和OD.
年級 | 高中課程 | 年級 | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,已知拋物線y=﹣x2+bx+c與x軸交于點(diǎn)A(﹣1,0)和點(diǎn)B(3,0),與y軸交于點(diǎn)C,連接BC交拋物線的對稱軸于點(diǎn)E,D是拋物線的頂點(diǎn).
(1)求此拋物線的解析式;
(2)直接寫出點(diǎn)C和點(diǎn)D的坐標(biāo);
(3)若點(diǎn)P在第一象限內(nèi)的拋物線上,且S△ABP=4S△COE , 求P點(diǎn)坐標(biāo). 注:二次函數(shù)y=ax2+bx+c(a≠0)的頂點(diǎn)坐標(biāo)為(﹣ , )
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,PA、PB是⊙O的切線,A、B為切點(diǎn),∠APB=60°,連接PO并延長與⊙O交于C點(diǎn),連接AC,BC.
(1)求證:四邊形ACBP是菱形;
(2)若⊙O半徑為1,求菱形ACBP的面積.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在平面直角坐標(biāo)系中,點(diǎn)A( ,0)是 軸上一點(diǎn),以O(shè)A為對角線作菱形OBAC,使得 60°,現(xiàn)將拋物線 沿直線OC平移到 ,則當(dāng)拋物線與菱形的AB邊有公共點(diǎn)時(shí),則m的取值范圍是( )
A.
B.
C.
D.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖1所示,將矩形OABC置于平面直角坐標(biāo)系中,點(diǎn)A,C分別在x,y軸的正半軸上,已知點(diǎn)B(4,2),將矩形OABC翻折,使得點(diǎn)C的對應(yīng)點(diǎn)P恰好落在線段OA(包括端點(diǎn)O,A)上,折痕所在直線分別交BC、OA于點(diǎn)D、E;若點(diǎn)P在線段OA上運(yùn)動(dòng)時(shí),過點(diǎn)P作OA的垂線交折痕所在直線于點(diǎn)Q.
(1)求證:CQ=QP
(2)設(shè)點(diǎn)Q的坐標(biāo)為(x,y),求y關(guān)于x的函數(shù)關(guān)系式及自變量x的取值范圍;
(3)如圖2,連結(jié)OQ,OB,當(dāng)點(diǎn)P在線段OA上運(yùn)動(dòng)時(shí),設(shè)三角形OBQ的面積為S,當(dāng)x取何值時(shí),S取得最小值,并求出最小值;
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在平面直角坐標(biāo)系中,直線y=2x+4分別交x軸,y軸于點(diǎn)A,C,點(diǎn)D(m,2)在直線AC上,點(diǎn)B在x軸正半軸上,且OB=3OC.點(diǎn)E是y軸上任意一點(diǎn)記點(diǎn)E為(0,n).
(1)求點(diǎn)D的坐標(biāo)及直線BC的解析式;
(2)連結(jié)DE,將線段DE繞點(diǎn)D按順時(shí)針旋轉(zhuǎn)90°得線段DG,作正方形DEFG,是否存在n的值,使正方形的頂點(diǎn)F落在△ABC的邊上?若存在,求出所有滿足條件的n的值;若不存在,說明理由.
(3)作點(diǎn)E關(guān)于AC的對稱點(diǎn)E’,當(dāng)n為何值時(shí),A E’分別于AC,BC,AB垂直?
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】在四棱柱ABCD﹣A1B1C1D1中,四邊形ABCD為平行四邊形,AA1⊥平面ABCD,∠BAD=60°,AB=2,BC=1.AA1= ,E為A1B1的中點(diǎn).
(1)求證:平面A1BD⊥平面A1AD;
(2)求多面體A1E﹣ABCD的體積.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】已知函數(shù)f(x)=|x+1|+|x﹣3|,g(x)=a﹣|x﹣2|. (Ⅰ)若關(guān)于x的不等式f(x)<g(x)有解,求實(shí)數(shù)a的取值范圍;
(Ⅱ)若關(guān)于x的不等式f(x)<g(x)的解集為 ,求a+b的值.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】已知曲線C上任意一點(diǎn)M到點(diǎn)F(0,1)的距離比它到直線l:y=﹣2的距離小1. (Ⅰ)求曲線C的方程;
(Ⅱ)斜率不為0且過點(diǎn)P(2,2)的直線m與曲線C交于A,B兩點(diǎn),設(shè) =λ ,當(dāng)△AOB的面積為4 時(shí)(O為坐標(biāo)原點(diǎn)),求λ的值.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com