【題目】有時我們可以看到這樣的轉(zhuǎn)盤游戲:如圖所示,你只要出1元錢就可以隨意地轉(zhuǎn)動轉(zhuǎn)盤,轉(zhuǎn)盤停止時指針落在哪個區(qū)域,你就按照這個區(qū)域所示的數(shù)字相應(yīng)地順時針跳過幾格,然后按照下圖所示的說明確定你的資金是多少.例如,當指針指向 “2”區(qū)域時候,你就向前跳過兩個格到“5”,按獎金說明,“5”所示的資金為0.2元,你就可以得0.2.請問這個游戲公平嗎?能否用你所學的知識揭示其中的秘密?

【答案】不公平

【解析】

試題游戲是否公平,關(guān)鍵要看游戲雙方獲勝的機會是否相等,即判斷雙方取勝的概率是否相等,或轉(zhuǎn)化為在總情況明確的情況下,判斷雙方取勝所包含的情況數(shù)目是否相等.

不公平,轉(zhuǎn)盤轉(zhuǎn)到各格的概率相等,但其對應(yīng)的領(lǐng)獎數(shù)字與領(lǐng)獎金額如表

指針區(qū)域

領(lǐng)獎數(shù)字

金額

1

3

0.1

2

5

0.2

3

1

0.1

4

3

0.1

5

5

0.2

6

1

0.1

由表知,盡管指針轉(zhuǎn)到各區(qū)域的概率相等,但5元或10元獎金的機會沒有,故不公平.

練習冊系列答案
相關(guān)習題

科目:初中數(shù)學 來源: 題型:

【題目】請將寬為3cm、長為ncm的長方形(n為正整數(shù))分割成若干小正方形,要求小正方形的邊長是正整數(shù)且個數(shù)最少.例如,當n5cm時,此長方形可分割成如右圖的4個小正方形.

請回答下列問題:

1n16時,可分割成幾個小正方形?

2)當長方形被分割成20個小正方形時,求n所有可能的值;

3)一般地,n3時,此長方形可分割成多少個小正方形.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】在平面直角坐標系中,正方形ABCD的位置如右圖所示,點A的坐標為(1,0),點D的坐標為(02),延長CBx軸于點A1,作正方形A1B1C1C,延長C1B1x軸于點A2,作正方形A2B2C2C1按這樣的規(guī)律進行下去,第1個正方形的面積為____________;第n個正方形的面積為____________

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,某幢大樓頂部有廣告牌CD,小宇身高MA1.89,他站在立在離大樓45米的A處測得大樓頂端點D的仰角為30°;接著他向大樓前進15,站在點B處測得廣告牌頂端點C的仰角為45°.

(1)求這幢大樓的高DH;

(2)求這塊廣告牌CD的高度.(≈1.732,計算結(jié)果保留一位小數(shù))

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,在平面直角坐標系中,拋物線yax2+bx+c經(jīng)過A(﹣6,0)、B(2,0)、C(0,6)三點,其頂點為D,連接AD,點P是線段AD上一個動點(不與A、D重合),過點Py軸的垂線,垂足為點E,連接AE

(1)求拋物線的函數(shù)解析式,并寫出頂點D的坐標;

(2)如果點P的坐標為(x,y),PAE的面積為S,求Sx之間的函數(shù)關(guān)系式,直接寫出自變量x的取值范圍,并求出S的最大值;

(3)過點P(﹣3,m)作x軸的垂線,垂足為點F,連接EF,把PEF沿直線EF折疊,點P的對應(yīng)點為點P,求出P的坐標.(直接寫出結(jié)果)

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】梯形ABCD中,ABDC,AD=BC,以AD為直徑的⊙OABE,O的切線EFBCF,求證:

1EFBC; 2BF·BC=BE·AE.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,拋物線yax2+2x+c經(jīng)過點A03),B(﹣10),請解答下列問題:

1)求拋物線的解析式;

2)拋物線的頂點為點D,對稱軸與x軸交于點E,連接BD,求BD的長;

3)點F在拋物線上運動,是否存在點F,使BFC的面積為6,如果存在,求出點F的坐標;如果不存在,請說明理由.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,RtABC中,∠ACB90°,AC6cm,BC8cm,動點P從點B出發(fā),在BA邊上以每秒5cm的速度向點A勻速運動,同時動點Q從點C出發(fā),在CB邊上以每秒4cm的速度向點B勻速運動,運動時間為t秒(0t2),連接PQ

1)若BPQABC相似,求t的值;

2)試探究t為何值時,BPQ的面積是cm2;

3)直接寫出t為何值時,BPQ是等腰三角形;

4)連接AQ,CP,若AQCP,直接寫出t的值.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖某人為了測量小山頂上的塔ED的高,他在山下的點A處測得塔尖點D的仰角為45°,再沿AC方向前進60 m到達山腳點B測得塔尖點D的仰角為60°,塔底點E的仰角為30°,求塔ED的高度.(結(jié)果保留根號)

查看答案和解析>>

同步練習冊答案