【題目】閱讀理解,并解決問題.
分式方程的增根:解分式方程時可能會產(chǎn)生增根,原因是什么呢?事實上,解分式方程時產(chǎn)生增根,主要是在去分母這一步造成的.根據(jù)等式的基本性質(zhì)2:等式兩邊乘同一個數(shù),或除以同一個不為0的數(shù),結(jié)果仍相等.但是,當?shù)仁絻蛇呁?/span>0時,就會出現(xiàn)的特殊情況.因此,解方程時,方程左右兩邊不能同乘0.而去分母時會在方程左右兩邊同乘公分母,此時無法知道所乘的公分母的值是否為0,于是,未知數(shù)的取值范圍可能就擴大了.如果去分母后得到的整式方程的根使所乘的公分母值為0,此根即為增根,增根是整式方程的根,但不是原分式方程的根.所以解分式方程必須驗根.請根據(jù)閱讀材料解決問題:
(1)若解分式方程時產(chǎn)生了增根,這個增根是 ;
(2)小明認為解分式方程時,不會產(chǎn)生增根,請你直接寫出原因;
(3)解方程
科目:初中數(shù)學 來源: 題型:
【題目】如圖,AB是⊙O的直徑,點C、D在⊙O上,且AC平分∠BAD,點E為AB的延長線上一點,且∠ECB=∠CAD.
(1)①填空:∠ACB= ,理由是 ;
②求證:CE與⊙O相切;
(2)若AB=6,CE=4,求AD的長.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】甲、乙兩車同時分別從 A,B 兩處出發(fā),沿直線 AB 作勻速運動,同時到達C 處,B 在 AC 上,甲的速度是乙的速度的1.5 倍,設 t(分)后甲、 乙兩遙控車與 B 處的距離分別為 d1,d2,且 d1,d2 與出發(fā)時間 t 的函數(shù)關系如圖,那么在兩車相遇前,兩車與 B 點的距離相等時,t 的值為( )
A.0.4B.0.5C.0.6D.1
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,,于,于,與交于點.有下列結(jié)論:①≌;②≌;③點在的平分線上;④點在的中垂線上.以上結(jié)論正確的有_________________.(填序號)
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,在△ABC中,∠ABC>60°,∠BAC<60°,以AB為邊作等邊△ABD(點C、D在邊AB的同側(cè)),連接CD.
(1)若∠ABC90°,∠BAC30°,求∠BDC的度數(shù);
(2)當∠BAC2∠BDC時,請判斷△ABC的形狀并說明理由;
(3)當∠BCD等于多少度時,∠BAC2∠BDC恒成立.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,在等邊三角形中,,點是邊上的任意一點(點可以與點重合,但不與點重合).過點作,垂足為;點作,垂足為;過點作,垂足為.設,.
(1)用含的代數(shù)式表示,并注明的取值范圍;
(2)當的長等于多少時,點和點重合?
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】在如圖所示的正方形網(wǎng)格中,每個小正方形的邊長都是1,已知三角形的三個頂點的坐標分別為,,
(1)作出三角形關于軸對稱的三角形
(2)點的坐標為 .
(3)①利用網(wǎng)絡畫出線段的垂直平分線;②為直線上上一動點,則的最小值為 .
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,已知△ABC為直角三角形,∠ACB=900,AC=BC,點A、C在x軸上,點B坐標為(3,m)(m>0),線段AB與y軸相交于點D,以P(1,0)為頂點的拋物線過點B、D.
(1)求點A的坐標(用m表示);
(2)求拋物線的解析式;
(3)設點Q為拋物線上點P至點B之間的一動點,連結(jié)PQ并延長交BC于點E,連結(jié)BQ并延長交AC于點F,試證明:FC(AC+BC)為定值.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,在中,平分,交于點.
(1)尺規(guī)作圖:作平分,分別交于點;(保留作圖痕跡,不必寫出作法)
(2)在(1)的條件下,求證:點在的平分線上;
(3)若,過點作,垂足為點,請畫出符合條件的圖形,猜想和的數(shù)量關系,并證明你的結(jié)論.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com