如圖,將ABCD的邊DC延長到點E,使CE=DC,連接AE,交BC于點F

⑴求證:△ABF≌△ECF

⑵若∠AFC=2∠D,連接AC、BE.求證:四邊形ABEC是矩形.

證明:⑴∵四邊形ABCD是平行四邊形,∴AB∥CD,AB=CD.∴ABF=∠ECF.

EC=DC, ∴AB=EC

在△ABF和△ECF中,∵ABF=∠ECF,AFB=∠EFCAB=EC,

∴⊿ABF≌⊿ECF

(2)解法一:∵AB=EC AB∥EC,∴四邊形ABEC是平行四邊形.∴AF=EF, BF=CF

∵四邊形ABCD是平行四邊形,∴ABC=∠D,又∵AFC=2∠D,∴AFC=2∠ABC

AFC=∠ABF+∠BAF,∴ABF=∠BAF.∴FA=FB

FA=FE=FB=FC, ∴AE=BC.∴ABEC是矩形.

解法二:∵AB=EC ,AB∥EC,∴四邊形ABEC是平行四邊形.

∵四邊形ABCD是平行四邊形,∴AD∥BC,∴D=∠BCE

又∵AFC=2∠D,∴AFC=2∠BCE,

AFC=∠FCE+∠FEC,∴FCE=∠FEC.∴D=∠FEC.∴AE=AD

又∵CE=DC,∴ACDE.即ACE=90°.∴ABEC是矩形.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

21、如圖,將?ABCD的邊DC延長到點E,使CE=DC,連接AE,交BC于點F.
(1)求證:△ABF≌△ECF;
(2)若∠AFC=2∠D,連接AC、BE,求證:四邊形ABEC是矩形.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

(1)在等腰三角形ABC中AB=BC,∠ABC=90°,BD⊥AC,過D點作DE⊥DF,交AB于E,交BC于F.若AE=4,F(xiàn)C=3,求EF長.
(2)如圖,將?ABCD的邊DC延長到點E,使CE=DC,連接AE,交BC于點F.
①求證:△ABF≌△ECF;
②若∠AFC=2∠D,連接AC、BE.求證:四邊形ABEC是矩形.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

如圖:將?ABCD的邊DC延長到點E,使CE=DC,連接AE,交BC于點F,
(1)求證:△ABF≌△ECF;
(2)若AE=AD,連接AC、BE,求證:四邊形ABEC是矩形.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

如圖,將?ABCD的一邊BC延長至E,若∠A=70°,則∠DCE=
110°
110°

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

如圖,將?ABCD的邊BA延長到點E,使AE=AB,連接EC,交AD于點F,連接AC、ED.
(1)求證:四邊形ACDE是平行四邊形;
(2)若∠AFC=2∠B,求證:四邊形ACDE是矩形.

查看答案和解析>>

同步練習(xí)冊答案