【題目】.如圖,矩形ABCD中,O為AC中點(diǎn),過(guò)點(diǎn)O的直線分別與AB、CD交于點(diǎn)E、F,連結(jié)BF交AC于點(diǎn)M,連結(jié)DE、BO.若∠COB=60°,FO=FC,則下列結(jié)論:①FB垂直平分OC;②△EOB≌△CMB;③DE=EF;④S△AOE:S△BCM=2:3.其中正確結(jié)論的個(gè)數(shù)是( )
A. 4個(gè) B. 3個(gè) C. 2個(gè) D. 1個(gè)
【答案】C
【解析】試題分析:①利用線段垂直平分線的性質(zhì)的逆定理可得結(jié)論;②證△OMB≌△OEB得△EOB≌△CMB;
③先證△BEF是等邊三角形得出BF=EF,再證DEBF得出DE=BF,所以得DE=EF;④由②可知△BCM≌△BEO,則面積相等,△AOE和△BEO屬于等高的兩個(gè)三角形,其面積比就等于兩底的比,即S△AOE:S△BOE=AE:BE,由直角三角形30°角所對(duì)的直角邊是斜邊的一半得出BE=2OE=2AE,得出結(jié)論S△AOE:S△BOE=AE:BE=1:2.
①∵矩形ABCD中,O為AC中點(diǎn), ∴OB=OC, ∵∠COB=60°, ∴△OBC是等邊三角形, ∴OB=BC,
∵FO=FC, ∴FB垂直平分OC, 故①正確;
②∵FB垂直平分OC, ∴△CMB≌△OMB, ∵OA=OC,∠FOC=∠EOA,∠DCO=∠BAO, ∴△FOC≌△EOA,
∴FO=EO, 易得OB⊥EF, ∴△OMB≌△OEB, ∴△EOB≌△CMB, 故②正確;
③由△OMB≌△OEB≌△CMB得∠1=∠2=∠3=30°,BF=BE, ∴△BEF是等邊三角形, ∴BF=EF,
∵DF∥BE且DF=BE, ∴四邊形DEBF是平行四邊形, ∴DE=BF, ∴DE=EF, 故③正確;
④在直角△BOE中∵∠3=30°, ∴BE=2OE, ∵∠OAE=∠AOE=30°, ∴AE=OE, ∴BE=2AE,
∴S△AOE:S△BCM=S△AOE:S△BOE=1:2, 故④錯(cuò)誤;
所以其中正確結(jié)論的個(gè)數(shù)為3個(gè)
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,鐵路上A,B兩點(diǎn)相距25km,C,D為兩莊,DA⊥AB于A,CB⊥AB于B,已知DA=15km,CB=10km,現(xiàn)在要在鐵路AB上建一個(gè)土特產(chǎn)品收購(gòu)站E,使得C,D兩村到E站的距離相等.問(wèn):
(1)在離A站多少km處?
(2)判定三角形DEC的形狀.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,先找到長(zhǎng)方形紙的寬DC的中點(diǎn)E,將∠C過(guò)E點(diǎn)折起任意一個(gè)角,折痕是EF,再將∠D過(guò)E點(diǎn)折起,使D′E和C′E重合,折痕是GE,請(qǐng)?zhí)剿飨铝袉?wèn)題:
(1)∠FEC′和∠GED′互為余角嗎?為什么?
(2)∠GEF是直角嗎?為什么?
(3)在上述折紙圖形中,還有哪些互為余角?哪些互為補(bǔ)角?(各寫出兩對(duì)即可)
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】若關(guān)于x的分式方程 無(wú)解,則m的值為( )
A.﹣1.5
B.1
C.﹣1.5或2
D.﹣0.5或﹣1.5
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,直線l1:y1=﹣x+2與x軸,y軸分別交于A,B兩點(diǎn),點(diǎn)P(m,3)為直線l1上一點(diǎn),另一直線l2:y2=x+b過(guò)點(diǎn)P.
(1)求點(diǎn)P坐標(biāo)和b的值;
(2)若點(diǎn)C是直線l2與x軸的交點(diǎn),動(dòng)點(diǎn)Q從點(diǎn)C開(kāi)始以每秒1個(gè)單位的速度向x軸正方向移動(dòng).設(shè)點(diǎn)Q的運(yùn)動(dòng)時(shí)間為t秒.
①請(qǐng)寫出當(dāng)點(diǎn)Q在運(yùn)動(dòng)過(guò)程中,△APQ的面積S與t的函數(shù)關(guān)系式;
②求出t為多少時(shí),△APQ的面積小于3;
③是否存在t的值,使△APQ為等腰三角形?若存在,請(qǐng)求出t的值;若不存在,請(qǐng)說(shuō)明理由.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】同學(xué)們都知道,表示5與-2之差的絕對(duì)值,實(shí)際上也可理解為5與-2兩數(shù)在數(shù)軸上所對(duì)應(yīng)的兩點(diǎn)之間的距離,試探索:
(1)=_______.
(2)同理表示數(shù)軸上有理數(shù)x所對(duì)應(yīng)的點(diǎn)到-5和2所對(duì)應(yīng)的兩點(diǎn)距離之和,請(qǐng)你找出所有符合條件的整數(shù)x,使得=7,這樣的整數(shù)是_______.
(3)由以上探索猜想對(duì)于任何有理數(shù)x,是否有最小值?如果有,寫出最小值;如果沒(méi)有,說(shuō)明理由.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】菱形ABCD中,∠B=60°,點(diǎn)E在邊BC上,點(diǎn)F在邊CD上.
(1)如圖1,若E是BC的中點(diǎn),∠AEF=60°,求證:BE=DF;
(2)如圖2,若∠EAF=60°,求證:△AEF是等邊三角形.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,把一張長(zhǎng)是a,寬是b的長(zhǎng)方形硬紙板的四周各剪去一個(gè)邊長(zhǎng)為c的正方形(a>b>2c).再折合成一個(gè)無(wú)蓋的長(zhǎng)方體盒子(紙板的厚度忽略不計(jì)).
(1)若a=12,b=7,c=2,求折合成的長(zhǎng)方體盒子的側(cè)面積是多少?
(2)請(qǐng)用含a,b,c的代數(shù)式表示折成的長(zhǎng)方體盒子的底面周長(zhǎng);
(3)如果把長(zhǎng)方體硬紙板的四周剪去2個(gè)邊長(zhǎng)為c的正方形和2個(gè)同樣形狀、同樣大小的長(zhǎng)方形,然后折合成一個(gè)有蓋的長(zhǎng)方體盒子,那么它的底面周長(zhǎng)是多少?(用含a,b,c的代數(shù)式表示)
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,正方形ABCD中,E為DC邊上一點(diǎn),且DE=1,AE=EF,∠AEF=90°,則FC= ( )
A. B. C. D. 1
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com