已知拋物線>0)的對稱軸為直線,且經(jīng)過點(-3,),(4,),試比較的大小:    (填“>”,“<”或“=”).
=.

試題分析:由于點(-3,)和(4,)到直線的距離相等,所以=.
考點: 二次函數(shù)的性質(zhì).
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源:不詳 題型:解答題

如圖,已知△ABC的三個頂點坐標(biāo)分別為A(-4,0),B(1,0),C(-2,6).

(1)求經(jīng)過點A,B,C三點的拋物線解析式.
(2)設(shè)直線BC交y軸于點E,連結(jié)AE,求證:AE=CE;
(3)設(shè)拋物線與y軸交于點D,連結(jié)AD交BC于點F,求證:以A,B,F(xiàn)為頂點的三角形與△ABC相似,并求:

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:不詳 題型:解答題

如圖,在邊長為24cm的正方形紙片ABCD上,剪去圖中陰影部分的四個全等的等腰直角三角形,再沿圖中的虛線折起,折成一個長方體形狀的包裝盒(A、B、C、D四個頂點正好重合于上底面上一點)。已知E、F在AB邊上,是被剪去的一個等腰直角三角形斜邊的兩個端點,設(shè)AE=BF=x(cm).

(1)若折成的包裝盒恰好是個正方體,試求這個包裝盒的體積V;
(2)某廣告商要求包裝盒的表面(不含下底面)面積S最大,試問x應(yīng)取何值?S最大值是多少?

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:不詳 題型:解答題

如圖,拋物線y=x2+bx+c與x軸交于A(-1,0)、B(3,0)兩點,直線L與拋物線交于A、C兩點,其中C點的橫坐標(biāo)為2.

(1)求拋物線的解析式及直線AC的解析式;
(2)若點D是線段AC下方拋物線上的動點,求四邊形ABCD面積的最大值;
(3)點G是拋物線上的動點,在x軸上是否存在點F,使A、C、F、G這樣的四個點為頂點的四邊形是平行四邊形?如果存在,求出所有滿足條件的F點坐標(biāo);如果不存在,請說明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:不詳 題型:單選題

函數(shù)y=x2+bx+c與y=x的圖象如圖所示,有以下結(jié)論:①b2﹣4c>0;②b+c+1=0;③3b+c+6=0;④當(dāng)1<x<3時,x2+(b﹣1)x+c<0.其中正確的個數(shù)為(  。
A.1B.2C.3D.4

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:不詳 題型:單選題

二次函數(shù)的圖象的頂點坐標(biāo)是(    )
A.(-1,3)B.(-1,-3)C.(1,-3)D.(1,3)

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:不詳 題型:填空題

已知直線y=b(b為實數(shù))與函數(shù) y= 的圖像至少有三個公共點,則實數(shù)b的取值范圍             .

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:不詳 題型:填空題

已知函數(shù)的圖象如圖所示,則下列結(jié)論中:①;②;③;④.正確的是              

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:不詳 題型:填空題

已知點E、F在拋物線的對稱軸的同側(cè) (點E在點F的左側(cè)),過點E、F分別作x軸的垂線,分別交x軸于點B、D,交直線y=2ax+b于點A、C,設(shè)S為直線AB、CD與x軸、直線y=2ax+b所圍成圖形的面積,.則S與的數(shù)量關(guān)系式為:S=              

 

查看答案和解析>>

同步練習(xí)冊答案