【題目】某班學(xué)生分兩組參加某項活動,甲組有26人,乙組有32人,后來由于活動需要,從甲組抽調(diào)了部分學(xué)生去乙組,結(jié)果乙組的人數(shù)是甲組人數(shù)的2倍還多1人.從甲組抽調(diào)了多少學(xué)生去乙組?
【答案】7個人
【解析】
試題設(shè)從甲組抽調(diào)了個學(xué)生去乙組,根據(jù)抽調(diào)后乙組的人數(shù)是甲組人數(shù)的2倍還多1人即可得出關(guān)于的一元一次方程,解之即可得出結(jié)論.
試題解析:設(shè)從甲組抽出人到乙組,
答:從甲組抽調(diào)了7名學(xué)生去乙組
【題型】解答題
【結(jié)束】
26
【題目】如圖,直線AB和CD交于點(diǎn)O,OE⊥AB,垂足為點(diǎn)O,OP平分∠EOD,∠AOD=144°.
(1)求∠AOC與∠COE的度數(shù);
(2)求∠BOP的度數(shù).
【答案】(1)∠AOC=36°,∠COE=54°,(2)∠BOP=27°.
【解析】
(1)由鄰補(bǔ)角定義,可求得得∠AOC度數(shù),由垂直定義,可得∠AOE=∠BOE=90°,由余角定義可求得∠COE;
(2)由鄰補(bǔ)角定義可得∠DOE度數(shù),由OO平分∠DOE,可得∠EOP度數(shù),再由余角定義可求得∠BOP度數(shù).
(1)∵∠AOC+∠AOD=180°,∠AOD=144°,
∴∠AOC=180°-∠AOD=180°-144°=36°,
∵OE⊥AB,
∴∠AOE=∠BOE=90°,
∴∠COE=∠AOE-∠AOC=90°-36°=54°,
(2)∵∠COE+∠DOE=180°,
∴∠DOE=180°-∠COE=180°-54°=126°,
∵OO平分∠DOE,
∴∠EOP=∠DOE=×126°=63°,
∴∠BOP=∠BOE-∠EOP=90°-63°=27°.
年級 | 高中課程 | 年級 | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來源: 題型:
【題目】某中學(xué)為了解學(xué)生的課外閱讀情況,就“我最喜愛的課外讀物”從文學(xué)、藝術(shù)、科普和其它四個類別進(jìn)行了抽樣調(diào)查(每位同學(xué)僅選一項),并根據(jù)調(diào)查結(jié)果制作了尚不完整的頻數(shù)分布表:
類別 | 頻數(shù)(人數(shù)) | 頻率 |
文學(xué) | m | 0.42 |
藝術(shù) | 22 | 0.11 |
科普 | 66 | n |
其他 | 28 | |
合計 | 1 |
(1)表中m= , n=;
(2)在這次抽樣調(diào)查中,最喜愛閱讀哪類讀物的學(xué)生最少?
(3)根據(jù)以上調(diào)查,試估計該校1200名學(xué)生中最喜愛閱讀科普讀物的學(xué)生有多少人?
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,△AOB與△ACD均為正三角形,且頂點(diǎn)B、D均在雙曲線y= (x>0)上,點(diǎn)A、C在x軸上,連接BC交AD于點(diǎn)P,則△OBP的面積= .
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】東東想把一根70 cm長的木棒放到一個長、寬、高分別為30 cm,40 cm,50 cm的木箱中,他能放進(jìn)去嗎?答:______. (填“能”或“不能”)
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】某中學(xué)在百貨商場購進(jìn)了A、B兩種品牌的籃球,購買A品牌籃球花費(fèi)了2400元,購買B品牌籃球花費(fèi)了1950元,且購買A品牌籃球數(shù)量是購買B品牌籃球數(shù)量的2倍,已知購買一個B品牌籃球比購買一個A品牌籃球多花50元.
(1)求購買一個A品牌、一個B品牌的籃球各需多少元?
(2)該學(xué)校決定再次購進(jìn)A、B兩種品牌籃球共30個,恰逢百貨商場對兩種品牌籃球的售價進(jìn)行調(diào)整,A品牌籃球售價比第一次購買時提高了10%,B品牌籃球按第一次購買時售價的9折出售,如果這所中學(xué)此次購買A、B兩種品牌籃球的總費(fèi)用不超過3200元,那么該學(xué)校此次最多可購買多少個B品牌籃球?
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,△ABC中,∠C=90°,CA=CB,D為AC上的一點(diǎn),AD=2CD,AE⊥AB交BD的延長線于E,則 = .
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】在一次消防演習(xí)中,消防員架起一架25米長的云梯,如圖斜靠在一面墻上,梯子底端離墻7米.
(1)求這個梯子的頂端距地面有多高?
(2)如果消防員接到命令,要求梯子的頂端下降4米(云梯長度不變),那么云梯的底部在水平方向應(yīng)滑動多少米?
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】商場打折前,買1件A商品和1件B商品用了20元,買30件A商品和40件B商品用了680元.打折后,買100件A商品100件B商品用了1800元.請根據(jù)上述信息解決下列問題:
(1)打折前A、B兩種商品的單價分別是多少?
(2)請在(1)的基礎(chǔ)上提出一個能使題目剩余條件解決的問題,并加以解決.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】小明投資銷售一種進(jìn)價為每件20元的護(hù)眼臺燈.銷售過程中發(fā)現(xiàn),每月銷售量y(件)與銷售單價x(元)之間的關(guān)系可近似的看作一次函數(shù):y=﹣10x+500,在銷售過程中銷售單價不低于成本價,而每件的利潤不高于成本價的60%.
(1)設(shè)小明每月獲得利潤為w(元),求每月獲得利潤w(元)與銷售單價x(元)之間的函數(shù)關(guān)系式,并確定自變量x的取值范圍.
(2)當(dāng)銷售單價定為多少元時,每月可獲得最大利潤?每月的最大利潤是多少?
(3)如果小明想要每月獲得的利潤不低于2000元,那么小明每月的成本最少需要多少元?(成本=進(jìn)價×銷售量)
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com