(2011•昭通)如圖①,AB是⊙O的直徑,AC是弦,直線EF和⊙O相切于點(diǎn)C,AD⊥EF,垂足為D.
(1)求證:∠DAC=∠BAC;
(2)若把直線EF向上平行移動(dòng),如圖②,EF交⊙O于G、C兩點(diǎn),若題中的其它條件不變,這時(shí)與∠DAC相等的角是哪一個(gè)?為什么?

【答案】分析:(1)連接OC,根據(jù)切線的性質(zhì)定理以及等角的余角相等即可證明;
(2)構(gòu)造直徑所對(duì)的圓周角,根據(jù)等弧所對(duì)的圓周角相等以及等角的余角相等,發(fā)現(xiàn)∠BAC=∠GAD,再根據(jù)等式的性質(zhì)即可證明∠BAG=∠DAC.
解答:(1)證明:連接OC;
∵EF切⊙O于點(diǎn)C,
∴OC⊥EF,
∴∠1+∠4=90°;
∵AD⊥EF,
∴∠3+∠4=90°;
又∵OA=OC,
∴∠1=∠2,
∴∠2=∠3,
即∠DAC=∠BAC.

(2)解:∠BAG=∠DAC,理由如下:
連接BC;
∵AB為⊙O的直徑,
∴∠BCA=90°,∠B+∠BAC=90°,
∵∠AGD+∠GAD=90°,
又∵∠B=∠AGD,
∴∠BAC=∠GAD;
即∠BAG+∠GAC=∠GAC+∠DAC,
∴∠BAG=∠DAC.
點(diǎn)評(píng):此題運(yùn)用了切線的性質(zhì)定理、圓周角定理的推論.注意根據(jù)等角的余角相等是證明角相等的一種常用方法.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來(lái)源:2010年全國(guó)中考數(shù)學(xué)試題匯編《二次函數(shù)》(08)(解析版) 題型:解答題

(2011•昭通)如圖:二次函數(shù)y=-x2+ax+b的圖象與x軸交于A(-,0),B(2,0)兩點(diǎn),且與y軸交于點(diǎn)C.
(1)求該拋物線的解析式,并判斷△ABC的形狀;
(2)在x軸上方的拋物線上有一點(diǎn)D,且A、C、D、B四點(diǎn)為頂點(diǎn)的四邊形是等腰梯形,請(qǐng)直接寫(xiě)出D點(diǎn)的坐標(biāo);
(3)在此拋物線上是否存在點(diǎn)P,使得以A、C、B、P四點(diǎn)為頂點(diǎn)的四邊形是直角梯形?若存在,求出P點(diǎn)的坐標(biāo);若不存在,說(shuō)明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源:2010年山東省臨沂市中考數(shù)學(xué)試卷(解析版) 題型:解答題

(2011•昭通)如圖:二次函數(shù)y=-x2+ax+b的圖象與x軸交于A(-,0),B(2,0)兩點(diǎn),且與y軸交于點(diǎn)C.
(1)求該拋物線的解析式,并判斷△ABC的形狀;
(2)在x軸上方的拋物線上有一點(diǎn)D,且A、C、D、B四點(diǎn)為頂點(diǎn)的四邊形是等腰梯形,請(qǐng)直接寫(xiě)出D點(diǎn)的坐標(biāo);
(3)在此拋物線上是否存在點(diǎn)P,使得以A、C、B、P四點(diǎn)為頂點(diǎn)的四邊形是直角梯形?若存在,求出P點(diǎn)的坐標(biāo);若不存在,說(shuō)明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源:2010年全國(guó)中考數(shù)學(xué)試題匯編《投影與視圖》(02)(解析版) 題型:選擇題

(2011•昭通)如圖是一個(gè)由4個(gè)相同的正方體組成的立體圖形,它的三視圖為( )

A.
B.
C.
D.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源:2010年天津市中考數(shù)學(xué)試卷(解析版) 題型:選擇題

(2011•昭通)如圖是一個(gè)由4個(gè)相同的正方體組成的立體圖形,它的三視圖為( )

A.
B.
C.
D.

查看答案和解析>>

同步練習(xí)冊(cè)答案