【題目】如圖,為了測量出樓房AC的高度,從距離樓底C60米的點(diǎn)D(點(diǎn)D與樓底C在同一水平上)出發(fā),沿斜面坡度為i=l 的斜坡DB前進(jìn)30米到達(dá)點(diǎn)B,在點(diǎn)B處測得樓頂A的仰角為53,求樓房AC的高度(參考數(shù)據(jù):sin53=, cos53=, tan53=, ≈1.732,結(jié)果精確到0.1米)

【答案】118.9

【解析】試題分析:如圖作BNCDN,BMACM,先在RT△BDN中求出線段BN,在RT△ABM中求出AM,再證明四邊形CMBN是矩形,得CM=BN即可解決問題.

解:如圖作BN⊥CDNBM⊥ACM

RtBDN中,BD=30,BNND=1

BN=15,DN=15,

∵∠C=∠CMB=∠CNB=90°,

四邊形CMBN是矩形,

CM=BN=15,BM=CN=60-15=45,

Rt△ABM中,tan∠ABM=AMBM=43,

AM=60,

AC=AM+CM=15+60≈118.9

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

【題目】定義:只有一組對角是直角的四邊形叫做損矩形,連結(jié)它的兩個(gè)非直角頂點(diǎn)的線段叫做這個(gè)損矩形的直徑.

【1】如圖1,損矩形ABCD,ABC=ADC=90°,則該損矩形的直徑是線段 .

【1】在線段AC上確定一點(diǎn)P,使損矩形的四個(gè)頂點(diǎn)都在以P為圓心的同一圓上(即損矩形的四個(gè)頂點(diǎn)在同一個(gè)圓上),請作出這個(gè)圓,并說明你的理由. 友情提醒:尺規(guī)作圖不要求寫作法,但要保留作圖痕跡.

【1】如圖2ABC中,ABC=90°,以AC為一邊向形外作菱形ACEF,D為菱形ACEF的中心,連結(jié)BD,當(dāng)BD平分ABC時(shí),判斷四邊形ACEF為何種特殊的四邊形?請說明理由. 若此時(shí)AB=3,BD=,求BC的長.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,已知CD平分∠ACB,∠1=2

1)求證:DEAC;

2)若∠3=30°,∠B=25°,求∠BDE的度數(shù).

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】寬與長的比是 (約為0.618)的矩形叫做黃金矩形,黃金矩形蘊(yùn)藏著豐富的美學(xué)價(jià)值,給我們以協(xié)調(diào)和勻稱的美感.我們可以用這樣的方法畫出黃金矩形:如圖,作正方形ABCD,分別取AD,BC的中點(diǎn)EF,連接EFDF,作∠DFC,的平分線,交AD的延長線于點(diǎn)H,作HGBC,交I3C的延長線于點(diǎn)G,則下列矩形是黃金矩形的是( )

A. 矩形ABFE B. 矩形EFCD C. 矩形EFGH D. 矩形DCGH

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,已知一次函數(shù)的圖象與坐標(biāo)軸分別交于A、B點(diǎn),AE平分,交軸于點(diǎn)E

1)直接寫出點(diǎn)A和點(diǎn)B的坐標(biāo).

2)求直線AE的表達(dá)式.

3)過點(diǎn)BBFAE于點(diǎn)F,過點(diǎn)F分別作FD//OAAB于點(diǎn)D,FC//AB軸于點(diǎn)C,判斷四邊形ACFD的形狀并說明理由,求四邊形ACFD的面積.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,已知拋物線經(jīng)過點(diǎn)A(0,3),B(3,0),C(4,3).

(1)求拋物線的函數(shù)表達(dá)式;

(2)求拋物線的頂點(diǎn)坐標(biāo)和對稱軸;

(3)把拋物線向上平移,使得頂點(diǎn)落在x軸上,直接寫出兩條拋物線、對稱軸和y軸圍成的圖形的面積S(圖中陰影部分).

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如果點(diǎn)P(2x+6,x-4)在平面直角坐標(biāo)系的第四象限內(nèi),那么x的取值范圍在數(shù)軸上可表示為

A. B. C. D.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,一次函數(shù)的圖像與反比例函數(shù)的圖像交與,兩點(diǎn),過點(diǎn)A軸于點(diǎn)C,過點(diǎn)B軸于點(diǎn)D,連接AO,得出以下結(jié)論:

①點(diǎn)A和點(diǎn)B關(guān)于直線對稱;

②當(dāng)時(shí),

;

④當(dāng)時(shí),都隨x的增大而增大.

其中正確的是

A.①②③B.②③C.①③D.①②③④

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,已知A,B是反比例函數(shù)y=(k>0,x>0)圖象上的兩點(diǎn),BCx軸,交y軸于點(diǎn)C,動(dòng)點(diǎn)P從坐標(biāo)原點(diǎn)O出發(fā),沿OABC(圖中“→”所示路線)勻速運(yùn)動(dòng),終點(diǎn)為C,過P作PMx軸,垂足為M.設(shè)三角形OMP的面積為S,P點(diǎn)運(yùn)動(dòng)時(shí)間為t,則S關(guān)于x的函數(shù)圖象大致為(

查看答案和解析>>

同步練習(xí)冊答案