(2013•梧州一模)如圖,在圓的內接四邊形ABCD中,∠ABC=120°,則四邊形ABCD的外角∠ADE的度數(shù)是(  )
分析:先根據(jù)圓內接四邊形的對角互補及鄰補角互補得出∠ADC+∠B=180°,∠ADC+∠ADE=180°,然后根據(jù)同角的補角相等得出∠ADE=∠B=120°.
解答:解:∵四邊形ABCD是圓內接四邊形,
∴∠ADC+∠B=180°,
∵∠ADC+∠ADE=180°,
∴∠ADE=∠B.
∵∠B=120°,
∴∠ADE=120°.
故選B.
點評:本題考查的是圓內接四邊形的性質,熟知圓內接四邊形對角互補的性質是解答此題的關鍵.
練習冊系列答案
相關習題

科目:初中數(shù)學 來源: 題型:

(2013•梧州一模)用科學記數(shù)法表示2175000000為( 。

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

(2013•梧州一模)一組數(shù)據(jù)2、0、3、2、3、1、x的眾數(shù)是3,則這組數(shù)據(jù)從小到大排列的中位數(shù)是
2
2

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

(2013•梧州一模)已知在⊙O中,直徑AB為10cm,弦AC為6cm,∠ACB的平分線交⊙O于D,交AB于E,則CD的長是
7
2
7
2

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

(2013•梧州一模)如圖,在平面直角坐標系xOy中,直線y=x+1與y=-
3
4
x+3交于點A,分別交x軸于點B和點C,點D是直線AC上且位于y軸右側的一個動點.
(1)點A,B,C的坐標是A
8
7
,
15
7
8
7
,
15
7
,B
(-1,0)
(-1,0)
,C
(4,0)
(4,0)

(2)當△CBD為等腰三角形時,點D的坐標是
3
2
,
15
8
)或(8,-3)
3
2
,
15
8
)或(8,-3)

(3)在(2)中,當點D在第四象限時,過點D的反比例函數(shù)解析式是
y=-
24
x
y=-
24
x

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

(2013•梧州一模)如圖,在3×3的正方形網(wǎng)格中,每個小正方形的邊長為1,A、B兩點在網(wǎng)格格點上,若C點也在網(wǎng)格格點上,以A、B、C三點為頂點的三角形的面積為1,則滿足條件的點C的個數(shù)是( 。

查看答案和解析>>

同步練習冊答案