【題目】在△ABC中,點(diǎn)D、E、F分別在BC、AB、CA上,且DE∥CA,DF∥BA,則下列三種說法:
①如果∠BAC=90°,那么四邊形AEDF是矩形
②如果AD平分∠BAC,那么四邊形AEDF是菱形
③如果AD⊥BC且AB=AC,那么四邊形AEDF是菱形
其中正確的有( 。
A.3個(gè);B.2個(gè);C.1個(gè);D.0個(gè).
年級 | 高中課程 | 年級 | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來源: 題型:
【題目】有一條拋物線,三位學(xué)生分別說出了它的一些性質(zhì):甲說:對稱軸是直線;乙說:與軸的兩個(gè)交點(diǎn)的距離為6;丙說:頂點(diǎn)與軸的交點(diǎn)圍成的三角形面積等于9,則這條拋物線解析式的頂點(diǎn)式是______.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在矩形中,點(diǎn)為原點(diǎn),點(diǎn)的坐標(biāo)為,點(diǎn)的坐標(biāo)為,拋物線經(jīng)過點(diǎn)、,與交于點(diǎn).
備用圖
⑴求拋物線的函數(shù)解析式;
⑵點(diǎn)為線段上一個(gè)動點(diǎn)(不與點(diǎn)重合),點(diǎn)為線段上一個(gè)動點(diǎn),,連接,設(shè),的面積為.求關(guān)于的函數(shù)表達(dá)式;
⑶拋物線的頂點(diǎn)為,對稱軸為直線,當(dāng)最大時(shí),在直線上,是否存在點(diǎn),使以、、、為頂點(diǎn)的四邊形是平行四邊形,若存在,請寫出符合條件的點(diǎn)的坐標(biāo);若不存在,請說明理由.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】有這樣一個(gè)問題:探究函數(shù)y=的圖象與性質(zhì).小美根據(jù)學(xué)習(xí)函數(shù)的經(jīng)驗(yàn),對函數(shù)y=的圖象與性質(zhì)進(jìn)行了探究下面是小美的探究過程,請補(bǔ)充完整:
(1)函數(shù)y=的自變量x的取值范圍是 ;
(2)下表是y與x的幾組對應(yīng)值.
x | -2 | - | -1 | - | 1 | 2 | 3 | 4 | … | ||
y | 0 | - | -1 | - | m | … |
求m的值;
(3)如圖,在平面直角坐標(biāo)系xOy中,描出了以上表中各對對應(yīng)值為坐標(biāo)的點(diǎn).根據(jù)描出的點(diǎn),畫出該函數(shù)的圖象;
(4)結(jié)合函數(shù)的圖象,寫出該函數(shù)的一條性質(zhì): .
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】山西特產(chǎn)專賣店銷售核桃,其進(jìn)價(jià)為每千克40元,按每千克60元出售,平均每天可售出100千克,后來經(jīng)過市場調(diào)查發(fā)現(xiàn),單價(jià)每降低3元,則平均每天的銷售可增加30千克,若該專賣店銷售這種核桃要想平均每天獲利2090元,請回答:
(1)每千克核桃應(yīng)降價(jià)多少元?
(2)在平均每天獲利不變的情況下,為盡可能讓利于顧客,贏得市場,該店應(yīng)按原售價(jià)的幾折出售?
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】在平面直角坐標(biāo)系中,四邊形是矩形,點(diǎn),點(diǎn),點(diǎn).以點(diǎn)為中心,順時(shí)針旋轉(zhuǎn)矩形,得到矩形,點(diǎn)的對應(yīng)點(diǎn)分別為,記旋轉(zhuǎn)角為.
(1)如圖①,當(dāng)時(shí),求點(diǎn)的坐標(biāo);
(2)如圖②,當(dāng)點(diǎn)落在的延長線上時(shí),求點(diǎn)的坐標(biāo);
(3)當(dāng)點(diǎn)落在線段上時(shí),求點(diǎn)的坐標(biāo)(直接寫出結(jié)果即可).
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】(發(fā)現(xiàn))在解一元二次方程的時(shí)候,發(fā)現(xiàn)有一類形如x2+(m+n)x+mn=0的方程,其常數(shù)項(xiàng)是兩個(gè)因數(shù)的積,而它的一次項(xiàng)系數(shù)恰好是這兩個(gè)因數(shù)的和,則我們可以把它轉(zhuǎn)化成x2+(m+n)x+mn=(m+x)(m+n)=0
(探索)解方程:x2+5x+6=0:x2+5x+6=x2+(2+3)x+2×3=(x+2)(x+3),原方程可轉(zhuǎn)化為(x+2)(x+3)=0,即x+2=0或x+3=0,進(jìn)而可求解.
(歸納)若x2+px+q=(x+m)(x+n),則p= q= ;
(應(yīng)用)
(1)運(yùn)用上述方法解方程x2+6x+8=0;
(2)結(jié)合上述材料,并根據(jù)“兩數(shù)相乘,同號得正,異號得負(fù)“,求出一元二次不等式x2﹣2x﹣3>0的解.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】已知二次函數(shù)y=ax2+bx+c的圖象如圖所示,則下列代數(shù)式:ab,ac,a+b+c,a-b+c, 2a+b,2a-b中,其值為正的代數(shù)式的個(gè)數(shù)為( )
A.2個(gè)B.3個(gè)C.4個(gè)D.4個(gè)以上
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺 | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com