【題目】解方程:

15x6=3x+2;

213(8x)=2(152x);

31

41

【答案】1x=4;(2x=7;(3;(4

【解析】

1)移項、合并同類項、系數(shù)化1即可;

2)去括號、移項、合并同類項、系數(shù)化1即可;

3)去分母、去括號、移項、合并同類項、系數(shù)化1即可;

4)去分母、去括號、移項、合并同類項、系數(shù)化1即可.

解:(15x6=3x+2

移項,得5x3x =6+2

合并同類項,得2x=8

系數(shù)化1,得x=4

213(8x)=2(152x)

去括號,得124+3x=-30+4x

移項,得3x-4x =-30+24-1

合并同類項,得-x=-7

系數(shù)化1,得x=7

31

去分母,得

去括號,得

移項,得

合并同類項,得

系數(shù)化1,得

41

去分母,得

去括號,得

移項,得

合并同類項,得

系數(shù)化1,得

練習冊系列答案
相關習題

科目:初中數(shù)學 來源: 題型:

【題目】如圖,在邊長為1的小正方形網(wǎng)格中,點A、B、C、D都在這些小正方形的頂點上,AB、CD相交于點O,則tanAOD=________.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,已知反比例函數(shù)的圖象與反比例函數(shù)的圖象關于軸對稱,,是函數(shù)圖象上的兩點,連接,點是函數(shù)圖象上的一點,連接,.

(1)求,的值;

(2)求所在直線的表達式;

(3)求的面積.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,某校數(shù)學興趣小組利用自制的直角三角形硬紙板DEF來測量操場旗桿AB的高度,他們通過調(diào)整測量位置,使斜邊DF與地面保持平行,并使邊DE與旗桿頂點A在同一直線上,已知DE=0.5米,EF=0.25米,目測點D到地面的距離DG=1.5米,到旗桿的水平距離DC=20米,求旗桿的高度.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,RtABC,C=90°,DBC邊的中點,BD=2,tanB=

1)求ADAB的長

2)求sin∠BAD的值

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,在平面直角坐標系中,直線y=x+2與x軸交于點A,與y軸交于點C,拋物線y=x2+bx+c經(jīng)過A、C兩點,與x軸的另一交點為點B.

(1)求拋物線的函數(shù)表達式;

(2)點D為直線AC上方拋物線上一動點;

①連接BC、CD,設直線BD交線段AC于點E,△CDE的面積為S1, △BCE的面積為S2, 求的最大值;

②過點D作DF⊥AC,垂足為點F,連接CD,是否存在點D,使得△CDF中的某個角恰好等于∠BAC的2倍?若存在,求點D的橫坐標;若不存在,請說明理由

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】已知:如圖,BEGF,∠1=∠3,∠DBC=70°,求∠EDB的大。

閱讀下面的解答過程,并填空(理由或數(shù)學式)

解:∵BEGF(已知)

∴∠2=∠3(   )

∵∠1=∠3(   )

∴∠1=(   )(   )

DE∥(   )(   )

∴∠EDB+∠DBC=180°(   )

∴∠EDB=180°﹣∠DBC(等式性質(zhì))

∵∠DBC=(   )(已知)

∴∠EDB=180°﹣70°=110°

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,△ABC中,AB=BC,BEAC于點E,ADBC于點D,∠BAD=45°,ADBE交于點F,連接CF

1)求證:BF=2AE

2)若CD=3,求AD的長.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,ADBC于D,EGBC于G,E=1,可得AD平分BAC。

理由如下:

ADBC于D,EGBC于G,(已知)

ADC=EGC=90°,( )

ADEG,( )

1=2,( )

=3,(兩直線平行,同位角相等)

E=1(已知)

= (等量代換)

AD平分BAC( )

查看答案和解析>>

同步練習冊答案