【題目】已知:如圖,在平面直角坐標(biāo)系xOy中,反比例函數(shù)的圖象與一次函數(shù)y2=kx+b的圖象交于點(diǎn)A(-4,-1)和點(diǎn)B(1,n).
(1)求這兩個(gè)函數(shù)的表達(dá)式;
(2)觀察圖象,當(dāng)y1>y2時(shí),直接寫出自變量x的取值范圍;
(3)如果點(diǎn)C與點(diǎn)A關(guān)于y軸對(duì)稱,求△ABC的面積.
【答案】(1)y1=,y2=x+3;(2)x<﹣4 或0<x <1;(3)20
【解析】試題分析:(1)把A的坐標(biāo)代入中即可求出m的值,即可得到y(tǒng)1的函數(shù)解析式,再把B的橫坐標(biāo)代入y1中即可求出n的值,再將A、B兩點(diǎn)坐標(biāo)代入y2中即可求出k、b的值;(2)寫出圖像中y1的圖像在y2圖像上面時(shí)x的取值范圍即可;(3)作BD⊥AC于點(diǎn)D,S△ABC=AC·BD=×8×5=20即可;
試題解析:
解:(1)∵函數(shù)的圖象過點(diǎn)A(-4,-1),
∴m=4, ∴y1=,
又∵點(diǎn)B(1,n)在y1=上,
∴n=4, ∴B(1,4)
又∵一次函數(shù)y2=kx+b過A,B兩點(diǎn),
即, 解之得.
∴y2=x+3.
綜上可得y1=,y2=x+3.
(2)要使y1>y2,即函數(shù)y1的圖象總在函數(shù)y2的圖象上方,
∴x<﹣4 或0 < x <1.
(3)作BD⊥AC于點(diǎn)D,如圖所示:
∵AC=8,BD=5,
∴△ABC的面積S△ABC=AC·BD=×8×5=20.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖所示,各邊相等的五邊形ABCDE中,若∠ABC=2∠DBE,則∠ABC等于 ( )
A.60°
B.120°
C.90°
D.45°
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】某班“數(shù)學(xué)興趣小組”對(duì)函數(shù)y=x2﹣2|x|的圖象和性質(zhì)進(jìn)行了探究,探究過程如下,請(qǐng)補(bǔ)充完整.(1)自變量x的取值范圍是全體實(shí)數(shù),x與y的幾組對(duì)應(yīng)值列表如下:
x | … | ﹣3 | ﹣ | ﹣2 | ﹣1 | 0 | 1 | 2 | 3 | … | |
y | … | 3 | m | ﹣1 | 0 | ﹣1 | 0 | 3 | … |
其中,m= .
(2)根據(jù)表中數(shù)據(jù),在如圖所示的平面直角坐標(biāo)系中描點(diǎn),并畫出了函數(shù)圖象的一部分,請(qǐng)畫出該函數(shù)圖象的另一部分.
(3)觀察函數(shù)圖象,寫出兩條函數(shù)的性質(zhì).
(4)進(jìn)一步探究函數(shù)圖象發(fā)現(xiàn):
①函數(shù)圖象與x軸有 個(gè)交點(diǎn),所以對(duì)應(yīng)的方程x2﹣2|x|=0有 個(gè)實(shí)數(shù)根;
②方程x2﹣2|x|=2有 個(gè)實(shí)數(shù)根.
③關(guān)于x的方程x2﹣2|x|=a有4個(gè)實(shí)數(shù)根時(shí),a的取值范圍是 .
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】A,B,C三名大學(xué)生競(jìng)選系學(xué)生會(huì)主席,他們的筆試成績和口試成績(單位:分)分別用了兩種方式進(jìn)行了統(tǒng)計(jì),如表和圖一:
A | B | C | |
筆試 | 85 | 95 | 90 |
口試 | 80 | 85 |
(1)請(qǐng)將表一和圖一中的空缺部分補(bǔ)充完整.
(2)競(jìng)選的最后一個(gè)程序是由本系的300名學(xué)生進(jìn)行投票,三位候選人的得票情況如圖二(沒有棄權(quán)票,每名學(xué)生只能推薦一個(gè)),請(qǐng)計(jì)算每人的得票數(shù).
(3)若每票計(jì)1分,系里將筆試、口試、得票三項(xiàng)測(cè)試得分按4:3:3的比例確定個(gè)人成績,請(qǐng)計(jì)算三位候選人的最后成績,并根據(jù)成績判斷誰能當(dāng)選.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在5×5的正方形網(wǎng)格中,每個(gè)小正方形的邊長都是1,在所給網(wǎng)格中按下列要求畫出圖形:
(1)(I)已知點(diǎn)A在格點(diǎn)(即小正方形的頂點(diǎn))上,畫一條線段AB,長度為 ,且點(diǎn)B在格點(diǎn)上; (II)以上題中所畫線段AB為一邊,另外兩條邊長分別是3,2 ,畫一個(gè)三角形ABC,使點(diǎn)C在格點(diǎn)上(只需畫出符合條件的一個(gè)三角形);
(2)所畫的三角形ABC的AB邊上高線長為(直接寫出答案)
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖(1),在矩形ABCD中,AB=4,BC=6,P是AD的中點(diǎn),N是BC延長線上一點(diǎn),連結(jié)PN,過點(diǎn)P作PN的垂線,交AB于點(diǎn)E,交CD的延長線于點(diǎn)F,連結(jié)EN,F(xiàn)N,設(shè)CN=x,AE=y.
(1)求證:PE=PF;
(2)當(dāng)0<x< 時(shí),求y關(guān)于x的函數(shù)表達(dá)式;
(3)若將“矩形ABCD”變?yōu)椤傲庑蜛BCD”,如圖(2),AB=BC=4,∠B=60°,當(dāng)0<x<3時(shí),其它條件不變,求此時(shí)y關(guān)于x的函數(shù)表達(dá)式.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,△ABC中,∠A=30°,∠B=62°,CE平分∠ACB,CD⊥AB于D,DF⊥CE于F,求∠CDF的度數(shù).
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com