【題目】從甲、乙、丙、丁4名同學(xué)中隨機(jī)抽取同學(xué)參加學(xué)校的座談會(huì)

(1)抽取一名同學(xué), 恰好是甲的概率為

(2) 抽取兩名同學(xué),求甲在其中的概率

【答案】(1);(2)

【解析】

(1)由從甲、乙、丙、丁4名同學(xué)中抽取同學(xué)參加學(xué)校的座談會(huì),直接利用概率公式求解即可求得答案;

(2)利用列舉法可得抽取2名,可得:甲乙、甲丙、甲丁、乙丙、乙丁、丙丁共6種等可能的結(jié)果,甲在其中的有3種情況,然后利用概率公式求解即可求得答案.

(1)隨機(jī)抽取1名學(xué)生,可能出現(xiàn)的結(jié)果有4種,即甲、乙、丙、丁,并且它們出現(xiàn)的可能性相等,

恰好抽取1名恰好是甲的結(jié)果有1種,

所以抽取一名同學(xué),恰好是甲的概率為,

故答案為:

(2)隨機(jī)抽取2名學(xué)生,可能出現(xiàn)的結(jié)果有6種,即甲乙、甲丙、甲丁、乙丙、乙丁、丙丁,并且它們出現(xiàn)的可能性相等,

恰好抽取2名甲在其中的結(jié)果有3種,即甲乙、甲丙、甲丁,

故抽取兩名同學(xué),甲在其中的概率為=

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知,如圖,在△ABC中,AC的垂直平分線與∠ABC的角平分線交于點(diǎn)D

1)如圖1,判斷∠BAD和∠BCD之間的數(shù)量關(guān)系,并說(shuō)明理由;

2)如圖2,若∠DAC60°時(shí),探究線段AB,BCBD之間的數(shù)量關(guān)系,并說(shuō)明理由;

3)如圖3,在(2)的條件下,DACB的延長(zhǎng)線交于點(diǎn)E,點(diǎn)FCD上一點(diǎn)且DFAE,連接AFBD于點(diǎn)G,若CE9,求DG的長(zhǎng).

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,在Rt△ABC中,∠C=90°,AD平分∠BACBC于點(diǎn)D,OAB上一點(diǎn),經(jīng)過(guò)點(diǎn)A,D⊙O分別交AB,AC于點(diǎn)E,F(xiàn),連接OFAD于點(diǎn)G.

(1)求證:BC⊙O的切線;

(2)設(shè)AB=x,AF=y,試用含x,y的代數(shù)式表示線段AD的長(zhǎng);

(3)BE=8,sinB=,求DG的長(zhǎng),

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,在矩形ABCD中,AB,BC3,在BC邊上取兩點(diǎn)E、F(點(diǎn)E在點(diǎn)F的左邊),以EF為邊所作等邊△PEF,頂點(diǎn)P恰好在AD上,直線PE、PF分別交直線AC于點(diǎn)G、H

1)求△PEF的邊長(zhǎng);

2)若△PEF的邊EF在線段CB上移動(dòng),試猜想:PHBE有何數(shù)量關(guān)系?并證明你猜想的結(jié)論;

3)若△PEF的邊EF在射線CB上移動(dòng)(分別如圖和圖所示,CF1,P不與A重合),(2)中的結(jié)論還成立嗎?若不成立,直接寫出你發(fā)現(xiàn)的新結(jié)論.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知:ABC是邊長(zhǎng)為4的等邊三角形,點(diǎn)O在邊AB上,O過(guò)點(diǎn)B且分別與邊AB,BC相交于點(diǎn)D,E,EFAC,垂足為F.

(1)求證:直線EF是O的切線;

(2)當(dāng)直線DF與O相切時(shí),求O的半徑.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,在△ABC中,∠ABC= 90°,D是邊AC上的一點(diǎn),AB= AD,連接BD, EBC上的一點(diǎn),以BE為直徑的0經(jīng)過(guò)點(diǎn)D.

(1)求證: ACO的切線:

(2)若∠A=60°,O的半徑為2,求CE長(zhǎng)

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】正方形ABCD的四個(gè)頂點(diǎn)都在⊙O上,E是⊙O上的一點(diǎn).

(1)如圖,若點(diǎn)E上,FDE上的一點(diǎn),DF=BE.求證:△ADF≌△ABE;

(2)在(1)的條件下,小明還發(fā)現(xiàn)線段DE、BE、AE之間滿足等量關(guān)系:DE﹣BE=AE.請(qǐng)你說(shuō)明理由;

(3)如圖,若點(diǎn)E上.寫出線段DE、BE、AE之間的等量關(guān)系.(不必證明)

26

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖1,已知直線y=x+3x軸交于點(diǎn)A,與y軸交于點(diǎn)B拋物線y=﹣x2+bx+c經(jīng)過(guò)A、B兩點(diǎn),與x軸交于另一個(gè)點(diǎn)C,對(duì)稱軸與直線AB交于點(diǎn)E,拋物線頂點(diǎn)為D

1)求拋物線的解析式;

2)在第三象限內(nèi),F為拋物線上一點(diǎn),以AE、F為頂點(diǎn)的三角形面積為3,求點(diǎn)F的坐標(biāo);

3)點(diǎn)P從點(diǎn)D出發(fā),沿對(duì)稱軸向下以每秒1個(gè)單位長(zhǎng)度的速度勻速運(yùn)動(dòng),設(shè)運(yùn)動(dòng)的時(shí)間為t秒,當(dāng)t為何值時(shí),以PB、C為頂點(diǎn)的三角形是直角三角形?直接寫出所有符合條件的t值.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,方格紙中的每個(gè)小方格都是邊長(zhǎng)為1個(gè)單位的正方形.RtABC的頂點(diǎn)均在格點(diǎn)上,建立平面直角坐標(biāo)系后,點(diǎn)A的坐標(biāo)為(﹣4,1),點(diǎn)B的坐標(biāo)為(﹣1,1).

(1)先將RtABC向右平移5個(gè)單位,再向下平移1個(gè)單位后得到RtA1B1C1.試在圖中畫出圖形RtA1B1C1,并寫出A1的坐標(biāo);

(2)將RtA1B1C1繞點(diǎn)A1順時(shí)針旋轉(zhuǎn)90°后得到RtA2B2C2,試在圖中畫出圖形RtA2B2C2.并計(jì)算RtA1B1C1在上述旋轉(zhuǎn)過(guò)程中C1所經(jīng)過(guò)的路程以及RtA1B1C1掃過(guò)的面積

查看答案和解析>>

同步練習(xí)冊(cè)答案