【題目】已知點A(-2,2),B(8,12)在拋物線y=ax2+bx上.
(1)求拋物線的解析式;
(2)如圖1,點F的坐標為(0,m)(m>4),直線AF交拋物線于另一點G,過點G作x軸的垂線,垂足為H,設拋物線與x軸的正半軸交于點E,連接FH、AE,求之值(用含m的代數(shù)式表示);
(3)如圖2,直線AB分別交x軸、y軸于C、D兩點,點P從點C出發(fā),沿射線CD方向勻速運動,速度為每秒個單位長度,同時點Q從原點O出發(fā),沿x軸正方向勻速運動,速度為每秒1個單位長度,點M是直線PQ與拋物線的一個交點,當運動到t秒時,QM=3PM,求t的值.
【答案】(1) ;(2);(3),,,
【解析】分析:(1)、根據(jù)點A、B的坐標利用待定系數(shù)法,即可求出拋物線的解析式;(2)、根據(jù)點A、F的坐標利用待定系數(shù)法,可求出直線AF的解析式,聯(lián)立直線AF和拋物線的解析式成方程組,通過解方程組可求出點G的坐標,過A作AN⊥x軸于點N得出點N的坐標,根據(jù)方程求出x的值得出答案;(3)、根據(jù)點A、B的坐標利用待定系數(shù)法,可求出直線AB的解析式,進而可找出點P、Q的坐標,分點M在線段PQ上以及點M在線段QP的延長線上兩種情況考慮,借助相似三角形的性質(zhì)可得出點M的坐標,再利用二次函數(shù)圖象上點的坐標特征可得出關(guān)于t的一元二次方程,解之即可得出結(jié)論.
詳解:解:(1)、點A(-2,2),B(8,12)在拋物線y=ax2+bx上,∴ ∴,∴;
(2)、設直線AF的解析式為y=kx+m, ∵A(-2,2)在AF上,∴2=-2k+m,k=(m-2),
∴直線y=kx+m可化為, 則
∴x2-2(m-1)x-4m=0, ∴(x+2)(x-2m)=0,∴x=-2或x=2m, ∴G的橫坐標為2m,
∴OH=2m,∵OF=m,∴FH=,過A作AN⊥x軸于點N,則N(-2,0),
令,∴x=0或x=2, ∴OE=2,NE=4 ∴AE=,∴;
(3)、由題意A(-2,2),B(8,12),直線AB的解析式為:y=x+4,∠BCO=45°,
直線AB與x軸交點為C(-4,0),設P(t-4,t),則Q(t,0),設M(,)
由QM=3PM可得,則|t-|=3|-t+4|,
(ⅰ)當t-=3(-t+4)即=t-3,直線PQ的解析式為tx+4y-t2=0,
∴=,∴M(t-3,),代入 即,
∴t2-11t+15=0,∴,即:,;
(ⅱ)當-t=3(-t+4)即=t-6,∴,∴,
代入即,∴t2-20t+48=0,
∴, 即:,;
綜上所述,所求t為:,,,.
科目:初中數(shù)學 來源: 題型:
【題目】如圖,一塊直角三角形的紙片,兩直角邊AC=6cm,BC=8cm,現(xiàn)將直角邊AC沿直線AD折疊,使它落在斜邊AB上,且與AE重合,則CD等于( ).
A. 2 cm B. 4 cm C. 3 cm D. 5 cm
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】閱讀下列材料,然后回答問題.在進行二次根式去處時,我們有時會碰上如, , 一樣的式子,其實我們還可以將其進一步化簡:
=(一)
=(二)
以上這種化簡的步驟叫做分母有理化.
還可以用以下方法化簡:
=(三)
請用不同的方法化簡.
(1)參照(二)式得=______________________________________________;
(2)參照(三)式得=_________________________________________。
(3)化簡:
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,直線y=kx+b分別交x軸、y軸于A(1,0)、B(0,﹣1),交雙曲線y=于點C、D.
(1)求k、b的值;
(2)寫出不等式kx+b>的解集.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,將平行四邊形ABCO繞點A逆時針旋轉(zhuǎn)得到平行四邊形ADEF,AD經(jīng)過點O,且AO:OD=1:2,點F恰好落在x軸的正半軸上,若點C(﹣6,0),點D在反比例函數(shù)y=的圖象上.
(1)證明:△AOF是等邊三角形,并求k的值;
(2)在x軸上有一點G,且△ACG是等腰三角形,求點G的坐標;
(3)求旋轉(zhuǎn)過程中四邊形ABCO掃過的面積;
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】平面內(nèi)有任意一點和,按要求解答下列問題:
(1)當點和外部時,如圖①,過點作,,垂足分別為、,量一量和的度數(shù),用數(shù)學式子表達它們之間的數(shù)量關(guān)系 ;
(2)當點在內(nèi)部時,如圖②,以點為頂點作,使的兩邊分別和的兩邊垂直,垂足分別為、,用數(shù)學式子寫出和的數(shù)量關(guān)系;
(3)由上述情形,用文字語言敘述結(jié)論:如果一個角的兩邊分別和另一個角的兩邊垂直,那么這兩個角 .
(4)在圖②中,若,求的度數(shù).
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,點A、B、C、D是直徑為AB的⊙O上的四個點,CD=BC,AC與BD交于點E。
(1)求證:DC2=CE·AC;
(2)若AE=2EC,求之值;
(3)在(2)的條件下,過點C作⊙O的切線,交AB的延長線于點H,若S△ACH=,求EC之長.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,A,B兩地相距450千米,兩地之間有一個加油站O,且AO=270千米,一輛轎車從A地出發(fā),以每小時90千米的速度開往B地,一輛客車從B地出發(fā),以每小時60千米的速度開往A地,兩車同時出發(fā),設出發(fā)時間為t小時.
(1)經(jīng)過幾小時兩車相遇?
(2)當出發(fā)2小時時,轎車和客車分別距離加油站O多遠?
(3)經(jīng)過幾小時,兩車相距50千米?
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】北京市積極開展城市環(huán)境建設,其中污水治理是重點工作之一,以下是北京市2012﹣2017年污水處理率統(tǒng)計表:
年份 | 2012 | 2013 | 2014 | 2015 | 2016 | 2017 |
污水處理率(%) | 83.0 | 84.6 | 86.1 | 87.9 | 90.0 | 92.0 |
(1)用折線圖將2012﹣2017年北京市污水處理率表示出來,并在圖中標明相應的數(shù)據(jù);
(2)根據(jù)統(tǒng)計圖表中提供的信息,預估2018年北京市污水處理率約為_____%,說明你的預估理由:_____.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com