【題目】某公司生產(chǎn)某環(huán)保產(chǎn)品的成本為每件40元,經(jīng)過(guò)市場(chǎng)調(diào)研發(fā)現(xiàn):這件產(chǎn)品在未來(lái)兩個(gè)月天的日銷(xiāo)量件與時(shí)間天的關(guān)系如圖所示未來(lái)兩個(gè)月天該商品每天的價(jià)格元件與時(shí)間天的函數(shù)關(guān)系式為:
根據(jù)以上信息,解決以下問(wèn)題:
請(qǐng)分別確定和時(shí)該產(chǎn)品的日銷(xiāo)量件與時(shí)間天之間的函數(shù)關(guān)系式;
請(qǐng)預(yù)測(cè)未來(lái)第一月日銷(xiāo)量利潤(rùn)元的最小值是多少?第二個(gè)月日銷(xiāo)量利潤(rùn)元的最大值是多少?
為創(chuàng)建“兩型社會(huì)”,政府決定大力扶持該環(huán)保產(chǎn)品的生產(chǎn)和銷(xiāo)售,從第二個(gè)月開(kāi)始每銷(xiāo)售一件該產(chǎn)品就補(bǔ)貼a元有了政府補(bǔ)貼以后,第二個(gè)月內(nèi)該產(chǎn)品日銷(xiāo)售利潤(rùn)元隨時(shí)間天的增大而增大,求a的取值范圍.
【答案】;時(shí),的最大值為元;(3)時(shí),W隨t的增大而增大.
【解析】
利用待定系數(shù)法即可解決問(wèn)題;
分別構(gòu)建二次函數(shù),利用二次函數(shù)的性質(zhì)即可解決問(wèn)題;
構(gòu)建二次函數(shù),利用二次函數(shù)的性質(zhì)即可解決問(wèn)題;
解:當(dāng)時(shí),設(shè),則有,
解得,
,
當(dāng)時(shí),設(shè),則有 ,
解得,
.
由題意,
當(dāng)時(shí),有最小值元,
,
時(shí),的最大值為元
由題意,
對(duì)稱(chēng)軸,
,
的取值范圍在對(duì)稱(chēng)軸的左側(cè)時(shí)W隨t的增大而增大,
當(dāng),
,
即時(shí),W隨t的增大而增大.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,在△ABC和△BCD中,∠BAC=∠BCD=90°,AB=AC,CB=CD.延長(zhǎng)CA至點(diǎn)E,使AE=AC;延長(zhǎng)CB至點(diǎn)F,使BF=BC.連接AD,AF,DF,EF.延長(zhǎng)DB交EF于點(diǎn)N.
(1)求證:AD=AF;
(2)求證:BD=EF;
(3)試判斷四邊形ABNE的形狀,并說(shuō)明理由.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】某電器超市銷(xiāo)售每臺(tái)進(jìn)價(jià)分別為200元,170元的A,B兩種型號(hào)的電風(fēng)扇,表中是近兩周的銷(xiāo)售情況:
銷(xiāo)售時(shí)段 | 銷(xiāo)售數(shù)量 | 銷(xiāo)售收入 | |
A種型號(hào) | B種型號(hào) | ||
第一周 | 3臺(tái) | 5臺(tái) | 1800元 |
第二周 | 4臺(tái) | 10臺(tái) | 3100元 |
(進(jìn)價(jià)、售價(jià)均保持不變,利潤(rùn)=銷(xiāo)售收入-進(jìn)貨成本)
(1)求A,B兩種型號(hào)的電風(fēng)扇的銷(xiāo)售單價(jià).
(2)若超市準(zhǔn)備用不多于5400元的金額再采購(gòu)這兩種型號(hào)的電風(fēng)扇共30臺(tái),則A種型號(hào)的電風(fēng)扇最多能采購(gòu)多少臺(tái)?
(3)在(2)的條件下,超市銷(xiāo)售完這30臺(tái)電風(fēng)扇能否實(shí)現(xiàn)利潤(rùn)為1400元的目標(biāo)?若能,請(qǐng)給出相應(yīng)的采購(gòu)方案;若不能,請(qǐng)說(shuō)明理由.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】為打好精準(zhǔn)脫貧攻堅(jiān)戰(zhàn),精準(zhǔn)施策,幫扶脫貧,某行政部門(mén)對(duì)其結(jié)對(duì)幫扶的村民合作社種植的三種特色農(nóng)產(chǎn)品A、B、C在5月份的銷(xiāo)售情況進(jìn)行調(diào)查統(tǒng)計(jì),繪制成如下兩個(gè)統(tǒng)計(jì)圖(均不完整).請(qǐng)你結(jié)合圖中的信息,解答下列問(wèn)題:
(1)該村民合作社5月份共銷(xiāo)售這三種特色農(nóng)產(chǎn)品多少?lài)崳?/span>
(2)該村民合作社計(jì)劃6月份銷(xiāo)售A、B、C三種特色農(nóng)產(chǎn)品共500噸,根據(jù)該村民合作社5月份的銷(xiāo)售情況,問(wèn)該村民合作社應(yīng)準(zhǔn)備C品種特色農(nóng)產(chǎn)品多少?lài)嵄容^合理?
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知二次函數(shù)與一次函數(shù),令.
(1)若的函數(shù)圖象相交于軸上的同一點(diǎn).
①求的值;
②當(dāng)為何值時(shí),的值最小,試求出該最小值.
(2)當(dāng)時(shí),隨的增大而減小,請(qǐng)寫(xiě)出的大小關(guān)系并給予證明.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,△ABC中,AB=AC,∠BAC=54°,∠BAC的平分線與AB的垂直平分線交于點(diǎn)O,將∠C沿EF(E在BC上,F在AC上)折疊,點(diǎn)C與點(diǎn)O恰好重合,則∠OEC為 度.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】在三角形紙片ABC中,,,,將該紙片沿過(guò)點(diǎn)B的直線折疊,使點(diǎn)A落在斜邊BC上的一點(diǎn)E處,折痕記為如圖,剪去后得到雙層如圖,再沿著過(guò)某頂點(diǎn)的直線將雙層三角形剪開(kāi),使得展開(kāi)后的平面圖形中有一個(gè)是平行四邊形,則所得平行四邊形的周長(zhǎng)為______cm.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知:如圖,在△ABC、△ADE中,∠BAC=∠DAE=90°,AB=AC,AD=AE,點(diǎn)C、D、E三點(diǎn)在同一直線上,連接BD.
(1)求證:△BAD≌△CAE;
(2)請(qǐng)判斷BD、CE有何大小、位置關(guān)系,并證明.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】課本“目標(biāo)與評(píng)定”中有這樣一道思考題:如圖鋼架中∠A=20°,焊上等邊的鋼條P1P2,P2P3,P3P4,P4P5…來(lái)加固鋼架,若P1A=P1P2,問(wèn)這樣的鋼條至多需要多少根?
(1)請(qǐng)將下列解答過(guò)程補(bǔ)充完整:
答案:∵∠A=20°,P1A=P1P2,∴∠P1P2A= .
又P1P2=P2P3=P3P4=P4P5,∴∠P2P1P3=P2P3P1=40°,
同理可得,∠P3P2P4=P3P4P2=60°,∠P4P3P5=P4P5P3= ,
∴∠BP4P5=∠CP5P4=100°>90°,
∴對(duì)于射線P4B上任意一點(diǎn)P6(點(diǎn)P4除外),P4P5<P5P6,
∴這樣的鋼架至多需要 根.
(2)繼續(xù)探究:當(dāng)∠A=15°時(shí),這樣的鋼條至多需要多少根?
(3)當(dāng)這樣的鋼條至多需要8根時(shí),探究∠A的取值范圍.
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專(zhuān)區(qū) | 電信詐騙舉報(bào)專(zhuān)區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專(zhuān)區(qū) | 涉企侵權(quán)舉報(bào)專(zhuān)區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com