【題目】如圖,在平面直角坐標(biāo)系中,點(diǎn)O為坐標(biāo)系原點(diǎn),矩形OABC的邊OA,OC分別在軸和軸上,其中OA=6,OC=3.已知反比例函數(shù)x0)的圖象經(jīng)過(guò)BC邊上的中點(diǎn)D,交AB于點(diǎn)E

1k的值為 ;

2)猜想△OCD的面積與△OBE的面積之間的關(guān)系,請(qǐng)說(shuō)明理由.

【答案】19;(2SOCD=SOBE,理由見(jiàn)解析.

【解析】

試題(1)根據(jù)題意得出點(diǎn)D的坐標(biāo),從而可得出k的值:

∵OA=6,OC=3,點(diǎn)DBC的中點(diǎn),∴D3,3).

反比例函數(shù)x0)的圖象經(jīng)過(guò)點(diǎn)D,∴k=3×3=9

2)根據(jù)三角形的面積公式和點(diǎn)DE在函數(shù)的圖象上,可得出SOCD=SOAE,再由點(diǎn)DBC的中點(diǎn),可得出SOCD=SOBD,即可得出結(jié)論.

試題解析:解:(19

2SOCD=SOBE,理由是:

點(diǎn)D,E在函數(shù)的圖象上,∴SOCD=SOAE=,

點(diǎn)DBC的中點(diǎn),∴SOCD=SOBD,即SOBE=

∴SOCD=SOBE

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】在四邊形ABCD中,∠BAD+BCD=180° AC平分∠BAD,過(guò)點(diǎn)CCEAD,垂足為E, CD=4,AE=10,則四邊形ABCD的周長(zhǎng)是____________________.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,在四邊形AOBC中,ACOB,頂點(diǎn)O是原點(diǎn),頂點(diǎn)A的坐標(biāo)為(0,8),AC24cmOB26cm,點(diǎn)P從點(diǎn)A出發(fā),以1cm/s的速度向點(diǎn)C運(yùn)動(dòng),點(diǎn)Q從點(diǎn)B同時(shí)出發(fā),以3m/s的速度向點(diǎn)O運(yùn)動(dòng).規(guī)定其中一個(gè)動(dòng)點(diǎn)到達(dá)端點(diǎn)時(shí),另一個(gè)動(dòng)點(diǎn)也隨之停止運(yùn)動(dòng);從運(yùn)動(dòng)開(kāi)始,設(shè)PQ)點(diǎn)運(yùn)動(dòng)的時(shí)間為ts

1)求直線BC的函數(shù)解析式;

2)當(dāng)t為何值時(shí),四邊形AOQP是矩形?

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,在ABC中,AC=BC,ACB=90°,D為ABC內(nèi)一點(diǎn), BAD=15°,AD=AC,CEAD于E,且CE=5.

(1)求BC的長(zhǎng);

(2)求證:BD=CD.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,在平面直角坐標(biāo)系中,反比例函數(shù)y=(k≠0)經(jīng)過(guò)ABCD的頂點(diǎn)B、D,點(diǎn)A的坐標(biāo)為(0,﹣1),ABx軸,CD經(jīng)過(guò)點(diǎn)(0,2),ABCD的面積是18,則點(diǎn)D的坐標(biāo)是(  )

A. (﹣2,2) B. (3,2) C. (﹣3,2) D. (﹣6,1)

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】二次函數(shù)y=﹣x2+1的圖象與x軸交于A、B兩點(diǎn),與y軸交于點(diǎn)C,下列說(shuō)法錯(cuò)誤的是( 。.

A. 點(diǎn)C的坐標(biāo)是(0,1) B. 線段AB的長(zhǎng)為2

C. △ABC是等腰直角三角形 D. 當(dāng)x>0時(shí),y隨x增大而增大

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知點(diǎn)(﹣2,y1),(﹣5,y2),(1,y3)在函數(shù)y=2x2+8x+7的圖象上,則y1,y2,y3的大小關(guān)系為_____

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】ADBEABC的角平分線,D,E分別在BCAC上,若AD=AB,BE=BC,則∠C=( 。

A. 69° B. C. D. 不能確定

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,在平面直角坐標(biāo)系中,A(﹣22),B(﹣3,﹣2).

1)若點(diǎn)D與點(diǎn)A關(guān)于y軸對(duì)稱,則點(diǎn)D的坐標(biāo)為   

2)將點(diǎn)B先向右平移5個(gè)單位再向上平移1個(gè)單位得到點(diǎn)C,則點(diǎn)C的坐標(biāo)為   

3)在圖上作出點(diǎn)C,D,并順次連接成四邊形ABCD;

4)四邊形ABCD的面積為   

查看答案和解析>>

同步練習(xí)冊(cè)答案