如圖是一個(gè)幾何體的三視圖,則這個(gè)幾何體的側(cè)面積是

    A cm2   B.  cm2    C. 6cm2    D.3cm2

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來(lái)源: 題型:


如圖,直線y=kx+b與y軸交于點(diǎn)(0,3)、與x軸交于點(diǎn)(a,0),當(dāng)a滿足﹣3≤a<0時(shí),k的取值范圍是( 。

 

A.

﹣1≤k<0

B.

1≤k≤3

C.

k≥1

D.

k≥3

 

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:


如圖1所示,已知拋物線y=﹣x2+4x+5的頂點(diǎn)為D,與x軸交于A、B兩點(diǎn),與y軸交于C點(diǎn),E為對(duì)稱(chēng)軸上的一點(diǎn),連接CE,將線段CE繞點(diǎn)E按逆時(shí)針?lè)较蛐D(zhuǎn)90°后,點(diǎn)C的對(duì)應(yīng)點(diǎn)C′恰好落在y軸上.

(1)直接寫(xiě)出D點(diǎn)和E點(diǎn)的坐標(biāo);

(2)點(diǎn)F為直線C′E與已知拋物線的一個(gè)交點(diǎn),點(diǎn)H是拋物線上C與F之間的一個(gè)動(dòng)點(diǎn),若過(guò)點(diǎn)H作直線HG與y軸平行,且與直線C′E交于點(diǎn)G,設(shè)點(diǎn)H的橫坐標(biāo)為m(0<m<4),那么當(dāng)m為何值時(shí),SHGF:SBGF=5:6?

(3)圖2所示的拋物線是由y=﹣x2+4x+5向右平移1個(gè)單位后得到的,點(diǎn)T(5,y)在拋物線上,點(diǎn)P是拋物線上O與T之間的任意一點(diǎn),在線段OT上是否存在一點(diǎn)Q,使△PQT是等腰直角三角形?若存在,求出點(diǎn)Q的坐標(biāo);若不存在,請(qǐng)說(shuō)明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:


如圖,在Rt△ABC中,∠ABC= 90°,以AB為直徑的⊙O與AC邊交與點(diǎn)D.過(guò)D作⊙O的切線交BC與點(diǎn)E.連接OE.   

    (1)證明:OE∥AC;

    (2)①當(dāng)∠BAC=     °時(shí),四邊形ODEB是正方形;

  ②當(dāng)∠BAC=     °時(shí),AD=3DE.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:


的相反數(shù)是

    A.    B.一    C.一2    D.2

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:


如圖,直線a與直線b交于點(diǎn)A,與直線c交于點(diǎn)B,∠1=120°,∠2=45°,若使直線b與直線c平行,則可將直線b繞點(diǎn)A逆時(shí)針旋轉(zhuǎn)_______________.

 

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:


某校計(jì)劃開(kāi)設(shè)4門(mén)選修課:音樂(lè)、繪畫(huà)、體育、舞蹈,學(xué)校采取隨機(jī)抽樣的方法進(jìn)行問(wèn)卷調(diào)查(每個(gè)被調(diào)查的學(xué)生必須選擇而且只能選擇其中一門(mén)),對(duì)調(diào)查結(jié)果進(jìn)行統(tǒng)計(jì)后,繪制了如下不完整的兩個(gè)統(tǒng)計(jì)圖.

根據(jù)以上統(tǒng)計(jì)圖提供的信息,回答下列問(wèn)題:

    (1)此次調(diào)查抽取的學(xué)生人數(shù)為a=____人,其中選擇“繪畫(huà)”的學(xué)生人數(shù)占抽樣人數(shù)的百分比為b=____;

    (2)補(bǔ)全條形統(tǒng)計(jì)圖,并求扇形統(tǒng)計(jì)圖中“舞蹈”所對(duì)應(yīng)的圓心角的度數(shù);

    (3)若該校有2000名學(xué)生,請(qǐng)估計(jì)全校選擇“繪畫(huà)”的學(xué)生大約有多少人?

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:


對(duì)于公式,若已知,求=__________

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:


如圖,在平面直角坐標(biāo)系中,點(diǎn) A(5,0),B(3,2),點(diǎn)C在線段OA上,BC=BA,點(diǎn)Q是線段BC上一個(gè)動(dòng)點(diǎn),點(diǎn)P的坐標(biāo)是(0,3),直線PQ的解析式為y=kx+b(k≠0),且與x軸交于點(diǎn)D

(1)求點(diǎn)C的坐標(biāo)及b的值;

(2)求k的取值范圍;

(3)當(dāng)k為取值范圍內(nèi)的最大整數(shù)時(shí),過(guò)點(diǎn)BBEx軸,交PQ于點(diǎn)E,若拋物線y=ax2﹣5ax(a0)的頂點(diǎn)在四邊形ABED的內(nèi)部,求a的取值范圍.

 

 

查看答案和解析>>

同步練習(xí)冊(cè)答案