已知:如圖,在△ABC中,AB=AC,∠BAC=,且60°<<120°.P為△ABC內(nèi)部一點,且PC=AC,∠PCA=120°—.
(1)用含的代數(shù)式表示∠APC,得∠APC =_______________________;
(2)求證:∠BAP=∠PCB;
(3)求∠PBC的度數(shù).
(1)∠APC.
(2)證明:∵CA=CP,
∴∠1=∠2=.
∴∠3=∠BAC-∠1==.
∵AB=AC,
∴∠ABC=∠ACB==.
∴∠4=∠ACB-∠5==.
∴∠3=∠4.
即∠BAP=∠PCB.
(3)解法一:在CB上截取CM使CM=AP,連接PM(如圖6).
∵PC=AC,AB=AC,
∴PC=AB.
在△ABP和△CPM中,
AB=CP,
∠3=∠4,
AP=CM,
∴△ABP≌△CPM.
∴∠6=∠7, BP=PM.
∴∠8=∠9.
∵∠6=∠ABC-∠8,∠7=∠9-∠4,
∴∠ABC-∠8=∠9-∠4.
即()-∠8=∠9-().
∴ ∠8+∠9=.
∴2∠8=.
∴∠8=.
即∠PBC=.
解法二:作點P關(guān)于BC的對稱點N,
連接PN、AN、BN和CN(如圖7).
則△PBC和△NBC關(guān)于BC所在直線對稱.
∴△PBC≌△NBC.
∴BP=BN,CP=CN,
∠4=∠6=,∠7=∠8.
∴∠ACN=∠5+∠4+∠6
==.
∵PC=AC,
∴AC=NC.
∴△CAN為等邊三角形.
∴AN=AC,∠NAC=.
∵AB=AC,
∴AN=AB.
∵∠PAN=∠PAC-∠NAC=()-=,
∴∠PAN=∠3.
在△ABP和△ANP中,
AB=AN,
∠3=∠PAN,
AP=AP,
∴△ABP≌△ANP.
∴PB=PN.
∴△PBN為等邊三角形.
∴∠PBN=.
∴∠7=∠PBN =.
即∠PBC=.
【解析】此題主要考查三角形內(nèi)角和定理及等腰三角形的性質(zhì)的綜合運用,綜合性較強。
科目:初中數(shù)學 來源: 題型:
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
查看答案和解析>>
科目:初中數(shù)學 來源:專項題 題型:證明題
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com