【題目】已知等邊△ABC邊長為2,D為BC中點(diǎn),連接AD.點(diǎn)O在線段AD上運(yùn)動(dòng)(不含端點(diǎn)A、D),以點(diǎn)O為圓心,長為半徑作圓,當(dāng)O與△ABC的邊有且只有兩個(gè)公共點(diǎn)時(shí),DO的取值范圍為_____.
【答案】或
【解析】
根據(jù)題意作圖,根據(jù)O與△ABC的邊有且只有兩個(gè)公共點(diǎn)時(shí)得到兩種情況,分別討論求解即可.
∵O與△ABC的邊有且只有兩個(gè)公共點(diǎn)
∴①當(dāng)圓O與BC相交于兩點(diǎn)時(shí),
如圖,點(diǎn)圓O1與BC相切時(shí),恰好有一個(gè)交點(diǎn),此時(shí),O1D=,
故當(dāng)時(shí),O與△ABC的邊有且只有兩個(gè)公共點(diǎn);
②當(dāng)圓O與△ABC的AB、AC各交于一點(diǎn)時(shí),
∵等邊△ABC邊長為2,D為BC中點(diǎn)
∴∠B=∠BAC=60°,AD為△ABC的高、中線、∠BAC的角平分線,
∴BD=1,則AD=
如圖,圓O2與△交于3點(diǎn),此時(shí)AO2=,
則O2D=-=
∵O與△ABC的邊有且只有兩個(gè)公共點(diǎn),則點(diǎn)A在圓O內(nèi)部,
∴當(dāng)時(shí),O與△ABC的邊有且只有兩個(gè)公共點(diǎn);
綜上,當(dāng)或時(shí),O與△ABC的邊有且只有兩個(gè)公共點(diǎn).
故填:或.
年級 | 高中課程 | 年級 | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,△ABC是等邊三角形,CE是外角平分線,點(diǎn)D在AC上,連結(jié)BD并延長與CE交于點(diǎn)E.
(1)求證:△ABD∽△CED.
(2)若AB=6,AD=2CD,求BE的長.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,正方形ABCD中,AB=6,E為AB的中點(diǎn),將△ADE沿DE翻折得到△FDE,延長EF交BC于G,FH⊥BC,垂足為H,連接BF、DG.以下結(jié)論:①BF∥ED;②△DFG≌△DCG;③△FHB∽△EAD;④tan∠GEB=;⑤S△BFG=2.6;其中正確的個(gè)數(shù)是( )
A.2B.3C.4D.5
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,直線y=x+3分別交 x軸、y軸于點(diǎn)A、C.點(diǎn)P是該直線與雙曲線在第一象限內(nèi)的一個(gè)交點(diǎn),PB⊥x軸于B,且S△ABP=16.
(1)求證:△AOC∽△ABP;
(2)求點(diǎn)P的坐標(biāo);
(3)設(shè)點(diǎn)Q與點(diǎn)P在同一個(gè)反比例函數(shù)的圖象上,且點(diǎn)Q在直線PB的右側(cè),作QD⊥x軸于D,當(dāng)△BQD與△AOC相似時(shí),求點(diǎn)Q的橫坐標(biāo).
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】某課外學(xué)習(xí)小組根據(jù)學(xué)習(xí)函數(shù)的經(jīng)驗(yàn),對函數(shù)的圖象與性質(zhì)進(jìn)行了探究請補(bǔ)充完整以下探索過程:
(1)列表:
x | … | -5 | -4 | -3 | -2 | -1 | 0 | 1 | 2 | 3 | 4 | … |
y | … | m | 0 | -3 | -4 | -3 | 0 | -3 | -4 | n | 0 | … |
直接寫出________,________;
(2)根據(jù)上表中的數(shù)據(jù),在平面直角坐標(biāo)系內(nèi)補(bǔ)全該函數(shù)的圖象,并結(jié)合圖象寫出該函數(shù)的兩條性質(zhì):
性質(zhì)1______________________________________________________
性質(zhì)2_______________________________________________________
(3)若方程有四個(gè)不同的實(shí)數(shù)根,請根據(jù)函數(shù)圖象,直接寫出k的取值范圍.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,半圓的圓心與坐標(biāo)原點(diǎn)重合,半圓的半徑1,直線的解析式為若直線與半圓只有一個(gè)交點(diǎn),則t的取值范圍是________.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】已知AB是⊙O的直徑,弦CD⊥AB于點(diǎn)E.
(1)如圖①,若CD=8,BE=2,求⊙O的半徑;
(2)如圖②,點(diǎn)G是上一點(diǎn),AG的延長線與DC的延長線交于點(diǎn)F,求證:∠AGD=∠FGC.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,已知拋物線y=﹣x2+bx+c與一直線相交于A(1,0)、C(﹣2,3)兩點(diǎn),與y軸交于點(diǎn)N,其頂點(diǎn)為D.
(1)求拋物線及直線AC的函數(shù)關(guān)系式;
(2)若P是拋物線上位于直線AC上方的一個(gè)動(dòng)點(diǎn),求△APC的面積的最大值及此時(shí)點(diǎn)P的坐標(biāo);
(3)在對稱軸上是否存在一點(diǎn)M,使△ANM的周長最小.若存在,請求出M點(diǎn)的坐標(biāo)和△ANM周長的最小值;若不存在,請說明理由.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】某商店準(zhǔn)備進(jìn)一批季節(jié)性小家電,進(jìn)價(jià)為每臺(tái)40元,經(jīng)市場預(yù)測,售價(jià)為每臺(tái)48元時(shí),可售出220臺(tái);售價(jià)每增加1元,銷售量減少10臺(tái)。
(1)當(dāng)售價(jià)為55元,銷售量為多少臺(tái)?
(2)因受庫存的影響,每批次進(jìn)貨個(gè)數(shù)不得超過160臺(tái),若商店想獲得2000元利潤,則應(yīng)進(jìn)貨多少臺(tái)?售價(jià)定為多少元?
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com