【題目】如圖,拋物線的對稱軸為直線,且過點,有下列結(jié)論:
①;②;③;④;⑤,其中正確的結(jié)論有( )
A.①③⑤B.①②⑤C.①④⑤D.③④⑤
【答案】A
【解析】
根據(jù)拋物線的開口方向、對稱軸、與y軸的交點判定系數(shù)符號,及運用一些特殊點解答問題.
由拋物線的開口向下可得:a<0,
根據(jù)拋物線的對稱軸在y軸左邊可得:a,b同號,所以b<0,
根據(jù)拋物線與y軸的交點在正半軸可得:c>0,
∴abc>0,故①正確;
直線x=1是拋物線y=ax2+bx+c(a≠0)的對稱軸,所以=1,可得b=2a,
a2b+4c=a4a+c=3a+c,
∵a<0,
∴3a>0,
又∵c>0
∴3a+c>0,
即a2b+4c>0,故②錯誤;
∵拋物線y=ax2+bx+c的對稱軸是x=1.且過點(,0),
∴拋物線與x軸的另一個交點坐標為,
當x=時,y=0,即,
整理得:25a10b+4c=0,故③正確;
∵b=2a,a+b+c<0,
∴b+b+c<0,
即3b+2c<0,故④錯誤;
∵x=1時,函數(shù)值最大,
∴ab+c≥m2amb+c,
∴ab≥m(amb),所以⑤正確;
正確答案為:①③⑤三個.
故選C.
科目:初中數(shù)學 來源: 題型:
【題目】在Rt△ABC中,AB=AC,OB=OC,∠A=90°,∠MON=α,分別交直線AB、AC于點M、N.
(1)如圖1,當α=90°時,求證:AM=CN;
(2)如圖2,當α=45°時,問線段BM、MN、AN之間有何數(shù)量關(guān)系,并證明;
(3)如圖3,當α=45°時,旋轉(zhuǎn)∠MON,問線段之間BM、MN、AN有何數(shù)量關(guān)系?并證明.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】用適當?shù)姆椒ń庀铝幸辉畏匠?/span>
(1) (2x-1)2=25
(2) 3x2-6x-1=0
(3) x2-4x-396=0
(4) (2-3x)+(3x-2)2=0
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,已知動點A在函數(shù)的圖象上,AB⊥x軸于點B,AC⊥y軸于點C,延長CA交以A為圓心AB長為半徑的圓弧于點E,延長BA交以A為圓心AC長為半徑的圓弧于點F,直線EF分別交x軸、y軸于點M、N,當NF=4EM時,圖中陰影部分的面積等于_____.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】某校為了解全校學生對新聞、體育、動畫、娛樂、戲曲五類電視節(jié)目的喜愛情況,隨機選取該校部分學生進行調(diào)查,要求每名學生從中選出一類最喜愛的電視節(jié)目,以下是根據(jù)調(diào)查結(jié)果繪制的統(tǒng)計圖表的一部分.
類別 | |||||
類型 | 新聞 | 體育 | 動畫 | 娛樂 | 戲曲 |
人數(shù) | 11 | 20 | 40 | 4 |
請你根據(jù)以上信息,回答下列問題:
(1)統(tǒng)計表中的值為_______,統(tǒng)計圖中的值為______,類對應(yīng)扇形的圓心角為_____度;
(2)該校共有1500名學生,根據(jù)調(diào)查結(jié)果,估計該校最喜愛體育節(jié)目的學生人數(shù);
(3)樣本數(shù)據(jù)中最喜愛戲曲節(jié)目的有4人,其中僅有1名男生.從這4人中任選2名同學去觀賞戲曲表演,請用樹狀圖或列表求所選2名同學中有男生的概率.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】小明大學畢業(yè)回家鄉(xiāng)創(chuàng)業(yè),第一期培植盆景與花卉各50盆,售后統(tǒng)計,盆景的平均每盆利潤是160元,花卉的平均每盆利潤是20元.調(diào)研發(fā)現(xiàn):
①盆景每增加1盆,盆景的平均每盆利潤減少2元,每減少1盆,盆景的平均每盆利潤增加2元;
②花卉的平均每盆利潤始終不變.
小明計劃第二期培植盆景與花卉共100盆,設(shè)培植的盆景比第一期增加盆,第二期盆景與花卉售完后的利潤分別為,(單位:元)
(1)用含的代數(shù)式分別表示,.
(2)當取何值時,第二期培植的盆錄與花卉售完后獲得的總利潤最大,最大總利潤是多少?
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】是指空氣中直徑小于或等于的顆粒物,它對人體健康和大氣環(huán)境造成不良影響,下表是根據(jù)《全國城市空氣質(zhì)量報告》中的部分數(shù)據(jù)制作的統(tǒng)計表.根據(jù)統(tǒng)計表回答下列問題,
(1)2018年7~12月平均濃度的中位數(shù)為 ;
(2)“扇形統(tǒng)計圖”和“折線統(tǒng)計圖”中,更能直觀地反映2018年7~12月平均濃度變化過程和趨勢的統(tǒng)計圖是 ;
(3)某同學觀察統(tǒng)計表后說:“2018年7~12月與2017年同期相比,空氣質(zhì)量有所改善”,請你用一句話說明該同學得出這個結(jié)論的理由.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】(問題原型)如圖,在中,對角線的垂直平分線交于點,交于點,交于點.求證:四邊形是菱形.
(小海的證法)證明:
是的垂直平分線,
,(第一步)
,(第二步)
.(第三步)
四邊形是平行四邊形.(第四步)
四邊形是菱形. (第五步)
(老師評析)小海利用對角線互相平分證明了四邊形是平行四邊形,再利用對角線互相垂直證明它是菱形,可惜有一步錯了.
(挑錯改錯)(1)小海的證明過程在第________步上開始出現(xiàn)了錯誤.
(2)請你根據(jù)小海的證題思路寫出此題的正確解答過程,
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】勝利中學為豐富同學們的校園生活,舉行“校園電視臺主待人”選拔賽,現(xiàn)將36名參賽選手的成績(單位:分)統(tǒng)計并繪制成頻數(shù)分布直方圖和扇形統(tǒng)計圖,部分信息如下:
請根據(jù)統(tǒng)計圖的信息,解答下列問題:
(1)補全頻數(shù)分布直方圖,并求扇形統(tǒng)計圖中扇形對應(yīng)的圓心角度數(shù);
(2)成績在區(qū)域的選手,男生比女生多一人,從中隨機抽取兩人臨時擔任該校藝術(shù)節(jié)的主持人,求恰好選中一名男生和一名女生的概率.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com