【題目】解方程:

(1);

(2);

(3)

(4) .

【答案】(1)x1=6,x2=-1;(2)x1=,x2=;(3)x1=7,x2=5;(4)x1=-8,x2=

【解析】

(1)利用因式分解法解方程即可;(2)利用公式法解方程即可;(3)利用因式分解法解方程即可;(3)利用直接開平方法解方程即可.

(1),

(x-6)(x+1)=0,

x-6=0x+1=0,

∴x1=6,x2=-1.

(2)

a=2,b=-4,c=-1,

△=16+8=24>0,

x= ,

∴x1=,x2=

(3),

(x-7)(x-7+2)=0,

x-7=0x-7+2=0,

∴x1=7,x2=5.

(4)

3x+2=±2(x-3),

3x+2=2(x-3)3x+2=-2(x-3),

∴x1=-8,x2=

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,已知∠1=∠2,要使ABDACD,需從下列條件中增加一個(gè),錯(cuò)誤的選法是(

A.ADB=∠ADCB.B=∠CC.ABACD.DBDC

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】某批彩色彈力球的質(zhì)量檢驗(yàn)結(jié)果如下表:

抽取的彩色彈力球數(shù)n

500

1000

1500

2000

2500

優(yōu)等品頻數(shù)m

471

946

1426

1898

2370

優(yōu)等品頻率

0.942

0.946

0.951

0.949

0.948

(1)請(qǐng)?jiān)趫D中完成這批彩色彈力球優(yōu)等品頻率的折線統(tǒng)計(jì)圖

(2)這批彩色彈力球優(yōu)等品概率的估計(jì)值大約是多少?(精確到0.01)

(3)從這批彩色彈力球中選擇5個(gè)黃球、13個(gè)黑球、22個(gè)紅球,它們除了顏色外都相同,將它們放入一個(gè)不透明的袋子中,求從袋子中摸出一個(gè)球是黃球的概率.

(4)現(xiàn)從第(3)問(wèn)所說(shuō)的袋子中取出若干個(gè)黑球,并放入相同數(shù)量的黃球,攪拌均勻,使從袋子中摸出一個(gè)黃球的概率為,求取出了多少個(gè)黑球?

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】湖南師大附中組織集團(tuán)校內(nèi)七、八、九年級(jí)學(xué)生參加“12KM”作文比賽,該校將收到的參賽作文進(jìn)行分年級(jí)統(tǒng)計(jì),繪制了如圖1和如圖2兩幅不完整的統(tǒng)計(jì)圖,根據(jù)圖中提供的信息完成以下問(wèn)題.

(1)扇形統(tǒng)計(jì)圖中九年級(jí)參賽作文篇數(shù)對(duì)應(yīng)的圓心角是   度.八年級(jí)參賽作文篇數(shù)對(duì)應(yīng)的百分比是   

(2)請(qǐng)補(bǔ)全條形統(tǒng)計(jì)圖.

(3)經(jīng)過(guò)評(píng)審,全集團(tuán)校內(nèi)有4篇作文榮獲特等獎(jiǎng),其中一篇來(lái)自九年級(jí),學(xué)校準(zhǔn)備從特等獎(jiǎng)作文中任選兩篇刊登在校報(bào)上,請(qǐng)利用畫樹狀圖或列表的方法求出九年級(jí)特等獎(jiǎng)作文被選登在校報(bào)上的概率.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,已知ABC,求作一點(diǎn)P,使P到∠A的兩邊的距離相等,且PAPB、下列確定P點(diǎn)的方法正確的是( 。

A.P為∠A、∠B兩角平分線的交點(diǎn)

B.PAC、AB兩邊上的高的交點(diǎn)

C.P為∠A的角平分線與AB的垂直平分線的交點(diǎn)

D.PAC、AB兩邊的垂直平分線的交點(diǎn)

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知:如圖,△ABC,點(diǎn)OAC上的一動(dòng)點(diǎn),過(guò)點(diǎn)O作直線MN∥AB,設(shè)MN交∠BCA的平分線于點(diǎn)E,交∠BCA的外角∠ACG的平分線于點(diǎn)F連接AE、AF.

(1)求證:∠ECF=90°;

(2)當(dāng)點(diǎn)O運(yùn)動(dòng)到何處時(shí),四邊形AECF是矩形?請(qǐng)說(shuō)明理由;

(3)(2)的條件下,△ABC應(yīng)該滿足條件:______________,就能使矩形AECF變?yōu)檎叫巍?/span>(直接添加條件,無(wú)需證明)

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】閱讀下面材料:

小昊遇到這樣一個(gè)問(wèn)題:如圖1,在ABC中,∠ACB=90°,BEAC邊上的中線,點(diǎn)DBC邊上,CD:BD=1:2,ADBE相交于點(diǎn)P,求的值.

小昊發(fā)現(xiàn),過(guò)點(diǎn)AAFBC,交BE的延長(zhǎng)線于點(diǎn)F,通過(guò)構(gòu)造AEF,經(jīng)過(guò)推理和計(jì)算能夠使問(wèn)題得到解決(如圖2).請(qǐng)回答的值為 

參考小昊思考問(wèn)題的方法,解決問(wèn)題:

如圖 3,在ABC中,∠ACB=90°,點(diǎn)DBC的延長(zhǎng)線上,ADAC邊上的中線BE的延長(zhǎng)線交于點(diǎn)P,DC:BC:AC=1:2:3 .

(1)求的值;

(2)若CD=2,則BP=__________.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】甲、乙兩家快遞公司攬件員(攬收快件的員工)的日工資方案如下:

甲公司為基本工資+攬件提成,其中基本工資為70/日,每攬收一件提成2元;

乙公司無(wú)基本工資,僅以攬件提成計(jì)算工資.若當(dāng)日攬件數(shù)不超過(guò)40,每件提成4元;若當(dāng)日攪件數(shù)超過(guò)40,超過(guò)部分每件多提成2元.

如圖是今年四月份甲公司攬件員人均攬件數(shù)和乙公司攪件員人均攬件數(shù)的條形統(tǒng)計(jì)圖:

(1)現(xiàn)從今年四月份的30天中隨機(jī)抽取1天,求這一天甲公司攬件員人均攬件數(shù)超過(guò)40(不含40)的概率;

(2)根據(jù)以上信息,以今年四月份的數(shù)據(jù)為依據(jù),并將各公司攬件員的人均攬件數(shù)視為該公司各攬件員的

攬件數(shù),解決以下問(wèn)題:

①估計(jì)甲公司各攬件員的日平均件數(shù);

②小明擬到甲、乙兩家公司中的一家應(yīng)聘攬件員,如果僅從工資收入的角度考慮,請(qǐng)利用所學(xué)的統(tǒng)計(jì)知識(shí)幫他選擇,井說(shuō)明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,在Rt△ABC中,∠C=90°,AC=6,BC=8.

(1)以直線BC為軸,把△ABC旋轉(zhuǎn)一周,求所得圓錐的底面圓周長(zhǎng)

(2)以直線AC為軸,把△ABC旋轉(zhuǎn)一周,求所得圓錐的側(cè)面積;

查看答案和解析>>

同步練習(xí)冊(cè)答案