【題目】已知拋物線y=x+4

1)用配方法確定它的頂點坐標(biāo)、對稱軸;

2x取何值時,yx增大而減?

3x取何值時,拋物線在x軸上方?

【答案】(1)它的頂點坐標(biāo)為(﹣1, ),對稱軸為直線x=1;(2x1;(34x2

【解析】試題分析:1)用配方法時,先提二次項系數(shù),再配方,寫成頂點式,根據(jù)頂點式的坐標(biāo)特點求頂點坐標(biāo)及對稱軸;

2)對稱軸是x=-1,開口向下,根據(jù)對稱軸及開口方向確定函數(shù)的增減性;

3)令y=0,確定函數(shù)圖象與x軸的交點,結(jié)合開口方向判斷x的取值范圍.

試題解析:(1)∵y=x+4=x2+2x8= [(x+129]= +,

∴它的頂點坐標(biāo)為(﹣1, ),對稱軸為直線x=1;

2∵拋物線對稱軸是直線x=﹣1,開口向下,∴當(dāng)x﹣1時,yx增大而減;

3)當(dāng)y=0時,即﹣+=0解得x1=2,x2=4,而拋物線開口向下,

∴當(dāng)﹣4x2時,拋物線在x軸上方.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

【題目】某單位有職工200人,其中青年職工(2035歲),中年職工(3550歲),老年職工(50歲及以上)所占比例如扇形統(tǒng)計圖所示.為了解該單位職工的健康情況,小張、小王和小李各自對單位職工進行了抽樣調(diào)查,將收集的數(shù)據(jù)進行了整理,繪制的統(tǒng)計表分別為表1、表2和表3

1:小張抽樣調(diào)查單位3名職工的健康指數(shù)

年齡

26

42

57

健康指數(shù)

97

79

72

2:小王抽樣調(diào)查單位10名職工的健康指數(shù)

年齡

23

25

26

32

33

37

39

42

48

52

健康指數(shù)

93

89

90

83

79

75

80

69

68

<>60

3:小李抽樣調(diào)查單位10名職工的健康指數(shù)

年齡

22

29

31

36

39

40

43

46

51

55

健康指數(shù)

94

90

88

85

82

78

72

76

62

60

根據(jù)上述材料回答問題:

1)扇形統(tǒng)計圖中老年職工所占部分的圓心角度數(shù)為   

2)小張、小王和小李三人中,   的抽樣調(diào)查的數(shù)據(jù)能夠較好地反映出該單位職工健康情況,并簡要說明其他兩位同學(xué)抽樣調(diào)查的不足之處.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在ABC中,∠BAC90°,點FBC邊上,過AB,F三點的⊙OAC于另一點D,作直徑AE,連結(jié)EF并延長交AC于點G,連結(jié)BE,BD,四邊形BDGE是平行四邊形.

1)求證:ABBF

2)當(dāng)FBC的中點,且AC3時,求⊙O的直徑長.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】(1)如圖1,在平行四邊形ABCD中,點E1,E2AB三等分點,點F1,F2CD三等分點,E1F1,E2F2分別交AC于點G1,G2,求證:AG1G1G2G2C

(2)如圖2,由64個邊長為1的小正方形組成的一個網(wǎng)格圖,線段MN的兩個端點在格點上,請用一把無刻度的尺子,畫出線段MN三等分點P,Q(保留作圖痕跡)

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】已知yx的函數(shù),自變量x的取值范圍是x0的全體實數(shù),如表是yx的幾組對應(yīng)值.

x

3

2

1

1

2

3

y

m

小華根據(jù)學(xué)習(xí)函數(shù)的經(jīng)驗,利用上述表格所反映出的yx之間的變化規(guī)律,對該函數(shù)的圖象與性質(zhì)進行了探究.下面是小華的探究過程,請補充完整:

1)從表格中讀出,當(dāng)自變量是﹣2時,函數(shù)值是   ;

2)如圖,在平面直角坐標(biāo)系xOy中,描出了以上表中各對對應(yīng)值為坐標(biāo)的點.根據(jù)描出的點,畫出該函數(shù)的圖象;

3)在畫出的函數(shù)圖象上標(biāo)出x2時所對應(yīng)的點,并寫出m   

4)結(jié)合函數(shù)的圖象,寫出該函數(shù)的一條性質(zhì):   

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,直徑為10的⊙A經(jīng)過點C(0,5)和點O (0,0),By軸右側(cè)⊙A優(yōu)弧上一點,則∠OBC 的余弦值為 _________________.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】已知二次函數(shù),完成下列各題:

1)將函數(shù)關(guān)系式用配方法化為 y=a(x+h)2+k形式,并寫出它的頂點坐標(biāo)、對稱軸.

2)若它的圖象與x軸交于A、B兩點,頂點為C,ABC的面積.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,四邊形ABCD的頂點在O上,BDO的直徑,延長CD、BA交于點E,連接AC、BD交于點F,作AHCE,垂足為點H,已知∠ADE=∠ACB

1)求證:AHO的切線;

2)若OB4AC6,求sinACB的值;

3)若,求證:CDDH

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】在平面直角坐標(biāo)系中,已知拋物線yax2+bx+c(a0)x軸交于A(1,0)B兩點(A在點B的左側(cè)),與y軸交于點C,拋物線的頂點為點D,對稱軸為直線x1,交x軸于點E,tanBDE

(1)求拋物線的表達(dá)式;

(2)若點P是對稱軸上一點,且∠DCP=∠BDE,求點P的坐標(biāo).

查看答案和解析>>

同步練習(xí)冊答案