精英家教網 > 初中數學 > 題目詳情
下列運算過程用到了哪些運算法則.

1 

2

3)2

 

答案:
解析:

1)用到了乘法交換律.(2)用到了乘法結合律.(3)相當于合并“同類項”

 


練習冊系列答案
相關習題

科目:初中數學 來源: 題型:閱讀理解

請閱讀下面材料,并回答所提出的問題.
三角形內角平分線性質定理:三角形的內角平分線分對邊所得的兩條線段和這個角的兩邊對應成比例.
已知:如圖,△ABC中,AD是角平分線.
求證:
BD
DC
=
AB
AC

分析:要證
BD
DC
=
AB
AC
,一般只要證BD、DC與AB、AC或BD、AB與DC、AC所在三角形相似.現在B、D、C在一直線上,△ABD與△ADC不相似,需要考慮用別的方法換比.在比例式
BD
DC
=
AB
AC
中,AC恰是BD、DC、AB的第四比例項,所以考慮過C作C精英家教網E∥AD,交BA的延長線于E,從而得到BD、DC、AB的第四比例項AE,這樣,證明
BD
DC
=
AB
AC
就可以轉化成證AE=AC.
證明:過C作CE∥DA,交BA的延長線于E.
CE∥DA?
∠1=∠E
∠2=∠3
∠1=∠2
?∠E=∠3?AE=AC

CE∥DA?
BD
DC
=
BA
AE
AE=AC
?
BD
DC
=
AB
AC

(1)上述證明過程中,用到了哪些定理?(寫對兩個定理即可)
(2)在上述分析、證明過程中,主要用到了下列三種數學思想的哪一種?選出一個填在后面的括號內.精英家教網[]
①數形結合思想;
②轉化思想;
③分類討論思想.
(3)用三角形內角平分線性質定理解答問題:
已知:如圖,△ABC中,AD是角平分線,AB=5cm,AC=4cm,BC=7cm.求BD的長.

查看答案和解析>>

科目:初中數學 來源:期末題 題型:解答題

閱讀下面材料,按要求完成后面作業(yè)。
三角形內角平分線性質定理:三角形內角平分線分對邊所得的兩條線段和這個角的兩邊對應成比例。
 已知:△ABC中,AD是角平分線(如圖1), 求證:=
               
分析:要證=,一般只要證BD、DC與AB、AC或BD、AB與DC、AC所在的三角形相似,現在B、D、C在一條直線,△ABD與△ADC不相似,需要考慮用別的方法換比。
 在比例式=中,AC恰好是BD、DC、AB的第四比例項,所以考慮過C作CE∥AD交BA的延長線于E,從而得到BD、DC、AB的第四比例項AE,這樣,證明=,就可轉化證=。
(1)完成證明過程: 
證明:
(2)上述證明過程中,用到了哪些定理(寫對兩個即可)
答:用了:①____________;
②_____________。
 (3)在上述分析和你的證明過程中,主要用到了下列三種數學思想的哪一種:①數形結合思想 ②轉化思想 ③分類討論思想 
答:____________。
(4) 用三角形內角平分線定理解答問題: 
如圖2,△ABC中,AD是角平分線,AB=5cm,AC=4cm,BD=7cm,求BC之長。

查看答案和解析>>

科目:初中數學 來源:2000年全國中考數學試題匯編《三角形》(05)(解析版) 題型:解答題

(2000•山西)請閱讀下面材料,并回答所提出的問題.
三角形內角平分線性質定理:三角形的內角平分線分對邊所得的兩條線段和這個角的兩邊對應成比例.
已知:如圖,△ABC中,AD是角平分線.
求證:
分析:要證,一般只要證BD、DC與AB、AC或BD、AB與DC、AC所在三角形相似.現在B、D、C在一直線上,△ABD與△ADC不相似,需要考慮用別的方法換比.在比例式中,AC恰是BD、DC、AB的第四比例項,所以考慮過C作CE∥AD,交BA的延長線于E,從而得到BD、DC、AB的第四比例項AE,這樣,證明就可以轉化成證AE=AC.
證明:過C作CE∥DA,交BA的延長線于E.
CE∥DA,
CE∥DA
(1)上述證明過程中,用到了哪些定理?(寫對兩個定理即可)
(2)在上述分析、證明過程中,主要用到了下列三種數學思想的哪一種?選出一個填在后面的括號內.[]
①數形結合思想;
②轉化思想;
③分類討論思想.
(3)用三角形內角平分線性質定理解答問題:
已知:如圖,△ABC中,AD是角平分線,AB=5cm,AC=4cm,BC=7cm.求BD的長.

查看答案和解析>>

科目:初中數學 來源:2000年山西省中考數學試卷(解析版) 題型:解答題

(2000•山西)請閱讀下面材料,并回答所提出的問題.
三角形內角平分線性質定理:三角形的內角平分線分對邊所得的兩條線段和這個角的兩邊對應成比例.
已知:如圖,△ABC中,AD是角平分線.
求證:
分析:要證,一般只要證BD、DC與AB、AC或BD、AB與DC、AC所在三角形相似.現在B、D、C在一直線上,△ABD與△ADC不相似,需要考慮用別的方法換比.在比例式中,AC恰是BD、DC、AB的第四比例項,所以考慮過C作CE∥AD,交BA的延長線于E,從而得到BD、DC、AB的第四比例項AE,這樣,證明就可以轉化成證AE=AC.
證明:過C作CE∥DA,交BA的延長線于E.
CE∥DA,
CE∥DA
(1)上述證明過程中,用到了哪些定理?(寫對兩個定理即可)
(2)在上述分析、證明過程中,主要用到了下列三種數學思想的哪一種?選出一個填在后面的括號內.[]
①數形結合思想;
②轉化思想;
③分類討論思想.
(3)用三角形內角平分線性質定理解答問題:
已知:如圖,△ABC中,AD是角平分線,AB=5cm,AC=4cm,BC=7cm.求BD的長.

查看答案和解析>>

同步練習冊答案