【題目】如圖,已知直線y=2x+4分別交x軸、y軸于點A、B,拋物線過A,B兩點,拋物線y=2x2+bx+cA、B兩點.

1)求拋物線的解析式;

2)如圖1,點P是線段AB上一動點,過點PPCx軸于點C,交拋物線于點D,設(shè)其頂點為M,其對稱軸交AB于點N.是否存在點P,使四邊形MNPD為菱形?并說明理由;

3)如圖2,點E0,1)在y軸上,連接AE,拋物線上是否存在一點F,使∠FEO與∠EAO互補(bǔ),若存在,求點F的橫坐標(biāo);若不存在,請說明理由.

【答案】1y=2x2+2x+4;(2)不存在點P,使四邊形MNPD為菱形;理由見解析;(3)存在,點F的橫坐標(biāo)為時,∠FEO與∠EAO互補(bǔ).

【解析】

1)求出直線y=2x+4x軸、y軸交點A、B的坐標(biāo),再利用待定系數(shù)法求解即可;

2)利用函數(shù)解析式求出拋物線的頂點M的坐標(biāo)為(),求出MN的長度,

設(shè)P點坐標(biāo)為(m,﹣2m+4),則Dm,﹣2m2+2m+4),求出PD=2m2+2m+4﹣(﹣2m+4=2m2+4m,根據(jù)平行四邊形的性質(zhì)列PD=MN求出m,得到PN==,由PN≠MN確定不存在滿足條件的點P;

3)過點FFHy軸于點H,則∠FEO+FEH=180°,當(dāng)∠FEO+EAO=180°時,推出∠FEH=EAO,證明△AOE∽△∠EFH,得到,再分兩種情況:當(dāng)點Fy軸右側(cè)時,點Fy軸左側(cè)時,分別將線段長度代入比例式求出t即可.

解:(1)當(dāng)x=0時,y=4,當(dāng)y=0時,x=2,

∴點A2,0),點B0,4),

A2,0),B0,4)分別代入y=2x2+bx+c中得

,

解之得

∴拋物線解析式為:y=2x2+2x+4;

2)不存在.

理由如下:y=2x2+2x+4=x-2+

∴拋物線頂點M,),

當(dāng)x=時,y==-3,

MN=3=,

設(shè)P點坐標(biāo)為(m,﹣2m+4),則Dm,﹣2m2+2m+4),

PD=2m2+2m+4﹣(﹣2m+4=2m2+4m,

PDMN

當(dāng)PD=MN時,四邊形MNPD為平行四邊形,即﹣2m2+4m=

解得m1=(舍去),m2=,此時P點坐標(biāo)為(,1),

PN==,

PN≠MN

∴平行四邊形MNPD不為菱形,

∴不存在點P,使四邊形MNPD為菱形;

3)存在.

如圖,過點FFHy軸于點H,則∠FEO+FEH=180°,

當(dāng)∠FEO+EAO=180°時,∠FEH=EAO,

∵∠FHE=AOE=90°,

∴△AOE∽△∠EFH,

,

設(shè)點Ft,﹣2t2+2t+4),則HE=2t2+2t+41=2t2+2t+3

當(dāng)點Fy軸右側(cè)時,HF=t

,

解之得:t=

∵點Fy軸右側(cè),

t=,

當(dāng)點Fy軸左側(cè)時,BF=-t,

,

解之得:t=

∵點Fy軸左側(cè)

t=

綜上所述:當(dāng)點F的橫坐標(biāo)為時,∠FEO與∠EAO互補(bǔ).

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖1,在矩形ABCD中,BC=3,動點PB出發(fā),以每秒1個單位的速度,沿射線BC方向移動,作△PAB關(guān)于直線PA的對稱△PAB' ,設(shè)點P的運動時間為ts).

1)若AB=2

①如圖2,當(dāng)點B' 落在AC上時,求t的值;

是否存在異于圖2的時刻,使得△PCB是直角三角形?若存在,請直接寫出所有符合題意的t值?若不存在,請說明理由.

2)若四邊形ABCD是正方形,直線PB'與直線CD相交于點M,當(dāng)點P不與點C重合時,求證:∠PAM=45°.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】已知函數(shù)的圖象經(jīng)過點()和(,),完成下面問題:

1)求函數(shù)的表達(dá)式;

2)在給出的平面直角坐標(biāo)系中,請用適當(dāng)?shù)姆椒ó嫵鲞@個函數(shù)的圖象,并寫出這個函數(shù)的一條性質(zhì);

3)已知函數(shù)的圖象如圖所示,結(jié)合你所畫出的圖象,直接寫出的解集.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】某小學(xué)學(xué)生較多,為了便于學(xué)生盡快就餐,師生約定:早餐一人一份,一份兩樣,一樣一個,食堂師傅在窗口隨機(jī)發(fā)放(發(fā)放的食品價格一樣),食堂在某天早餐提供了豬肉包、面包、雞蛋、油餅四樣食品.

(1)按約定,“小李同學(xué)在該天早餐得到兩個油餅”是 事件;(可能,必然,不可能)

(2)請用列表或樹狀圖的方法,求出小張同學(xué)該天早餐剛好得到豬肉包和油餅的概率.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】北京時間2020512916分,我國自主研制的快舟一號甲運載火箭在酒泉衛(wèi)星發(fā)射中心發(fā)射成功.此次發(fā)射的行云二號”01星命名為行云·武漢號,并通過在火箭箭體上涂刷英雄武漢偉大中國致敬醫(yī)護(hù)工作者群像的方式,致敬武漢、武漢人民和廣大醫(yī)護(hù)工作者.如圖,火箭從地面L處發(fā)射,當(dāng)火箭達(dá)到A點時,從位于地面R處雷達(dá)站測得AR的距離是6km,仰角為42.4°1秒后火箭到達(dá)B點,此時測得仰角為45.5°求這枚火箭從AB的平均速度是多少(結(jié)果精確到0.01)?(參考數(shù)據(jù):sin42.4°≈0.67,cos42.4°≈0.74tan42.4°≈0.905,sin45.5°≈0.71,cos45.5°≈0.70tan45.5°≈1.02

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,拋物線經(jīng)過點A3,0),B,0),與y軸交于點C,點P是拋物線在第四象限內(nèi)的一點.

1)求拋物線解析式;

2)點D是線段OC的中點,OP⊥AD,點E是射線OP上一點,OE=AD,求DE的長;

3)連接CPAP,是否存在點P,使得OP平分四邊形ABCP的面積?若存在,求點P的坐標(biāo);若不存在,說明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】某軟件開發(fā)公司開發(fā)了A、B兩種軟件,每種軟件成本均為1400元,售價分別為2000元、1800元,這兩種軟件每天的銷售額共為112000元,總利潤為28000元.

1)該店每天銷售這兩種軟件共多少個?

2)根據(jù)市場行情,公司擬對A種軟件降價銷售,同時提高B種軟件價格.此時發(fā)現(xiàn),A種軟件每降50元可多賣1件,B種軟件每提高50元就少賣1件.如果這兩種軟件每天銷售總件數(shù)不變,那么這兩種軟件一天的總利潤最多是多少?

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】(3分)如圖,正方形ABCD的邊長為3cm,動點P從B點出發(fā)以3cm/s的速度沿著邊BC﹣CD﹣DA運動,到達(dá)A點停止運動;另一動點Q同時從B點出發(fā),以1cm/s的速度沿著邊BA向A點運動,到達(dá)A點停止運動設(shè)P點運動時間為x(s),BPQ的面積為y(cm2),則y關(guān)于x的函數(shù)圖象是(

A B C D

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】某校為了做好“營造清潔生活環(huán)境”活動的宣傳,對本校學(xué)生進(jìn)行了有關(guān)知識的測試,測試后隨機(jī)抽取了部分學(xué)生的測試成績,按“優(yōu)秀、良好、及格、不及格”四個等級進(jìn)行統(tǒng)計分析,并將分析結(jié)果繪制成如下兩幅不完整的統(tǒng)計圖:

1)求抽取的學(xué)生總?cè)藬?shù);

2)抽取的學(xué)生中,等級為優(yōu)秀的人數(shù)為   人;扇形統(tǒng)計圖中等級為“不合格”部分的圓心角的度數(shù)為   °;

3)補(bǔ)全條形統(tǒng)計圖;

4)若該校有學(xué)生3500人,請根據(jù)以上統(tǒng)計結(jié)果估計成績等級為“優(yōu)秀”和“良好”的學(xué)生共有多少人.

查看答案和解析>>

同步練習(xí)冊答案