【題目】已知函數(shù)(,為常數(shù))的圖象經(jīng)過點(diǎn).
(1)求,滿足的關(guān)系式;
(2)設(shè)該函數(shù)圖象的頂點(diǎn)坐標(biāo)是,當(dāng)的值變化時(shí),求關(guān)于的函數(shù)解析式;
(3)若該函數(shù)的圖象不經(jīng)過第三象限,當(dāng)時(shí),函數(shù)的最大值與最小值之差為16,求的值.
【答案】(1)c=2b(2)(3)2或6
【解析】
(1)把點(diǎn)代入函數(shù)即可得到結(jié)論;
(2)根據(jù)頂點(diǎn)坐標(biāo)即可求解;
(3)把函數(shù)化為,根據(jù)圖像不經(jīng)過第三象限進(jìn)行分類討論進(jìn)行求解.
(1)將點(diǎn)代入,
得,
∴;
(2),,
∴,
∴,
(3),
對(duì)稱軸,
當(dāng)時(shí),,函數(shù)不經(jīng)過第三象限,則;
此時(shí),當(dāng)時(shí),函數(shù)最小值是0,最大值是25,
∴最大值與最小值之差為25;(舍去)
當(dāng)時(shí),,函數(shù)不經(jīng)過第三象限,則,
∴,
∴,
當(dāng)時(shí),函數(shù)有最小值,
當(dāng)時(shí),函數(shù)有最大值,
當(dāng)時(shí),函數(shù)有最大值;
函數(shù)的最大值與最小值之差為16,
當(dāng)最大值時(shí),,
∴或,
∵,
∴;
當(dāng)最大值時(shí),,
∴或,
∵,
∴;
綜上所述或;
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來源: 題型:
【題目】商城某種商品平均每天可銷售20件,每件盈利30元,為慶元旦,決定進(jìn)行促銷活動(dòng),經(jīng)調(diào)查發(fā)現(xiàn),每件商品每降價(jià)1元,商場(chǎng)平均每天可多售出2件.設(shè)該商品每件降價(jià)元,請(qǐng)解答下列問題
(1)用含的代數(shù)式表示:
①降價(jià)后每售一件盈利 元;
②降價(jià)后平均每天售出 件;
(2)在此次促銷活動(dòng)中,商城若要獲得最大盈利,每件商品應(yīng)降價(jià)多少元?獲得最大盈利多少元?
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,已知拋物線與軸交于點(diǎn),,與軸交于點(diǎn),對(duì)稱軸為直線,對(duì)稱軸交軸于點(diǎn).
(1)求拋物線的函數(shù)解析式;
(2)設(shè)為對(duì)稱軸上一動(dòng)點(diǎn),求周長(zhǎng)的最小值;
(3)設(shè)為拋物線上一點(diǎn),為對(duì)稱軸上一點(diǎn),若以點(diǎn)為頂點(diǎn)的四邊形是菱形,則點(diǎn)的坐標(biāo)為 .
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】已知:正方形ABCD中,,繞點(diǎn)順時(shí)針旋轉(zhuǎn),它的兩邊分別交(或它們的延長(zhǎng)線)于點(diǎn).
(1)當(dāng)繞點(diǎn)旋轉(zhuǎn)到時(shí)(如圖1),求證:;
(2)當(dāng)繞點(diǎn)旋轉(zhuǎn)到時(shí)(如圖2),則線段和之間數(shù)量關(guān)系是 ;
(3)當(dāng)繞點(diǎn)旋轉(zhuǎn)到如圖3的位置時(shí),猜想線段和之間又有怎樣的的數(shù)量關(guān)系呢?并對(duì)你的猜想加以說明.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】△ABC在邊長(zhǎng)為l的正方形網(wǎng)格中如圖所示.
①以點(diǎn)C為位似中心,作出△ABC的位似圖形△A1B1C,使其位似比為1:2.且△A1B1C位于點(diǎn)C的異側(cè),并表示出A1的坐標(biāo).
②作出△ABC繞點(diǎn)C順時(shí)針旋轉(zhuǎn)90°后的圖形△A2B2C.
③在②的條件下求出點(diǎn)B經(jīng)過的路徑長(zhǎng).
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】已知:在△ABC 中,AB=AC.
(1)求作△ABC 外接圓(尺規(guī)作圖)
(2)若△ABC 的外接圓的圓心O到 BC 邊的距離為 4,BC=6,求外接圓的面積.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在邊長(zhǎng)為的正方形網(wǎng)格中建立平面直角坐標(biāo)系,已知三個(gè)頂點(diǎn)分別為,,.
(1)以原點(diǎn)為位似中心,在軸的上方畫出,使與位似,且相似比為;
(2)的面積是__________平方單位;
(3)點(diǎn)為內(nèi)一點(diǎn),則在內(nèi)的對(duì)應(yīng)點(diǎn)的坐標(biāo)為________.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】在正方形ABCD中,E是邊CD上一點(diǎn)(點(diǎn)E不與點(diǎn)C、D重合),連結(jié)BE.
(感知)如圖①,過點(diǎn)A作AF⊥BE交BC于點(diǎn)F.易證△ABF≌△BCE.(不需要證明)
(探究)如圖②,取BE的中點(diǎn)M,過點(diǎn)M作FG⊥BE交BC于點(diǎn)F,交AD于點(diǎn)G.
(1)求證:BE=FG.
(2)連結(jié)CM,若CM=1,則FG的長(zhǎng)為 .
(應(yīng)用)如圖③,取BE的中點(diǎn)M,連結(jié)CM.過點(diǎn)C作CG⊥BE交AD于點(diǎn)G,連結(jié)EG、MG.若CM=3,則四邊形GMCE的面積為 .
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com