【題目】如圖,已知點(diǎn)A(﹣1,0),B(4,0),點(diǎn)C在y軸的正半軸上,且∠ACB=90°,拋物線(xiàn)y=ax2+bx+c經(jīng)過(guò)A、B、C三點(diǎn),其頂點(diǎn)為M.

(1)求拋物線(xiàn)y=ax2+bx+c的解析式;
(2)試判斷直線(xiàn)CM與以AB為直徑的圓的位置關(guān)系,并加以證明;
(3)在拋物線(xiàn)上是否存在點(diǎn)N,使得SBCN=4?如果存在,那么這樣的點(diǎn)有幾個(gè)?如果不存在,請(qǐng)說(shuō)明理由.

【答案】
(1)

解:Rt△ACB中,OC⊥AB,AO=1,BO=4;

由射影定理,得:OC2=OAOB=4,則OC=2,即點(diǎn)C(0,2);

設(shè)拋物線(xiàn)的解析式為:y=a(x+1)(x﹣4),將C點(diǎn)代入上式,得:

2=a(0+1)(0﹣4),a=﹣ ,

∴拋物線(xiàn)的解析式:y=﹣ (x+1)(x﹣4)=﹣ x2+ x+2


(2)

解:直線(xiàn)CM與以AB為直徑的圓相切.理由如下:

如右圖,設(shè)拋物線(xiàn)的對(duì)稱(chēng)軸與x軸的交點(diǎn)為D,連接CD.

由于A、B關(guān)于拋物線(xiàn)的對(duì)稱(chēng)軸對(duì)稱(chēng),則點(diǎn)D為Rt△ABC斜邊AB的中點(diǎn),CD= AB.

由(1)知:y=﹣ (x+1)(x﹣4)=﹣ (x﹣ 2+

則點(diǎn)M( , ),ME= ﹣2= ;

而CE=OD= ,OC=2;

∴ME:CE=OD:OC,又∠MEC=∠COD=90°,

∴△COD∽△CEM,

∴∠CME=∠CDO,

∴∠CME+∠CDM=∠CDO+∠CDM=90°,

而CD等于⊙D的半徑長(zhǎng),所以直線(xiàn)CM與以AB為直徑的圓相切


(3)

解:由B(4,0)、C(0,2)得:BC=2 ;

則:SBCN= BCh= ×2 ×h=4,h= ;

過(guò)點(diǎn)B作BF⊥BC,且使BF=h= ,過(guò)F作直線(xiàn)l∥BC交x軸于G.

Rt△BFG中,sin∠BGF=sin∠CBO= ,BG=BF÷sin∠BGF= ÷ =4;

∴G(0,0)或(8,0).

易知直線(xiàn)BC:y=﹣ x+2,則可設(shè)直線(xiàn)l:y=﹣ x+b,代入G點(diǎn)坐標(biāo),得:b=0或b=4,則:

直線(xiàn)l:y=﹣ x或y=﹣ x+4;

聯(lián)立拋物線(xiàn)的解析式后,可得:

,

則 N1(2+2 ,﹣1﹣ )、N2(2﹣2 ,﹣1+ )、N3(2,3).


【解析】(1)Rt△ACB中,OC⊥AB,利用射影定理能求出OC的長(zhǎng),即可確定C點(diǎn)坐標(biāo),再利用待定系數(shù)法能求出該拋物線(xiàn)的解析式.(2)此題的解法有兩種:①過(guò)AB的中點(diǎn)作直線(xiàn)CM的垂線(xiàn),比較該垂線(xiàn)段與AB的一半(半徑)的大小關(guān)系,若兩者相等,則直線(xiàn)CM與AB為直徑的圓相切;若該垂線(xiàn)段小于半徑長(zhǎng),則兩者的位置關(guān)系為相交;若該垂線(xiàn)段大于半徑長(zhǎng),則兩者的位置關(guān)系為相離;②連接AB中點(diǎn)(設(shè)為點(diǎn)D)和點(diǎn)C,根據(jù)直角三角形的性質(zhì)知:CD為⊙D的半徑長(zhǎng),那么只需判斷CD是否與CM垂直即可,若垂直,則直線(xiàn)CM與⊙D相切;若不垂直,則相交.(3)先求出線(xiàn)段BC的長(zhǎng),根據(jù)△BCN的面積,可求出BC邊上的高,那么做直線(xiàn)l,且直線(xiàn)l與直線(xiàn)BC的長(zhǎng)度正好等于BC邊上的高,那么直線(xiàn)l與拋物線(xiàn)的交點(diǎn)即為符合條件的N點(diǎn).
【考點(diǎn)精析】利用二次函數(shù)的圖象和二次函數(shù)的性質(zhì)對(duì)題目進(jìn)行判斷即可得到答案,需要熟知二次函數(shù)圖像關(guān)鍵點(diǎn):1、開(kāi)口方向2、對(duì)稱(chēng)軸 3、頂點(diǎn) 4、與x軸交點(diǎn) 5、與y軸交點(diǎn);增減性:當(dāng)a>0時(shí),對(duì)稱(chēng)軸左邊,y隨x增大而減小;對(duì)稱(chēng)軸右邊,y隨x增大而增大;當(dāng)a<0時(shí),對(duì)稱(chēng)軸左邊,y隨x增大而增大;對(duì)稱(chēng)軸右邊,y隨x增大而減。

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,長(zhǎng)方形ABCD中,AB=4cm,BC=3cm,點(diǎn)E是CD的中點(diǎn),動(dòng)點(diǎn)P從A點(diǎn)出發(fā),以每秒1cm的速度沿A→B→C→E 運(yùn)動(dòng),最終到達(dá)點(diǎn)E.若點(diǎn)P運(yùn)動(dòng)的時(shí)間為x秒,那么當(dāng)x= _________時(shí),△APE的面積等于

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖1是長(zhǎng)方形紙袋,將紙袋沿EF折疊成圖2,再沿BF折疊成圖3,若DEF=α,用α表示圖3中CFE的大小為 _________。

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知:ABC的中線(xiàn)BDCE交于點(diǎn)O,FG分別是OB、OC的中點(diǎn).求證:四邊形DEFG是平行四邊形.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知△ABC為等邊三角形,點(diǎn)D為直線(xiàn)BC上的一動(dòng)點(diǎn)(點(diǎn)D不與B、C重合),以AD為邊作菱形ADEF(A、D、E、F按逆時(shí)針排列),使∠DAF=60°,連接CF.

(1)如圖1,當(dāng)點(diǎn)D在邊BC上時(shí),求證:①BD=CF;②AC=CF+CD;
(2)如圖2,當(dāng)點(diǎn)D在邊BC的延長(zhǎng)線(xiàn)上且其他條件不變時(shí),結(jié)論AC=CF+CD是否成立?若不成立,請(qǐng)寫(xiě)出AC、CF、CD之間存在的數(shù)量關(guān)系,并說(shuō)明理由;
(3)如圖3,當(dāng)點(diǎn)D在邊CB的延長(zhǎng)線(xiàn)上且其他條件不變時(shí),補(bǔ)全圖形,并直接寫(xiě)出AC、CF、CD之間存在的數(shù)量關(guān)系.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,在正方形ABCD中,點(diǎn)D的坐標(biāo)為(0,1),點(diǎn)A的坐標(biāo)是(﹣2,2),則點(diǎn)B的坐標(biāo)為________

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】若(x+y27,(xy23,則xy的值為( 。

A.2B.1C.1D.0

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】為了落實(shí)黨中央提出的“惠民政策”,我市今年計(jì)劃開(kāi)發(fā)建設(shè)A、B兩種戶(hù)型的“廉租房”共40套.投入資金不超過(guò)200萬(wàn)元,又不低于198萬(wàn)元.開(kāi)發(fā)建設(shè)辦公室預(yù)算:一套A型“廉租房”的造價(jià)為5.2萬(wàn)元,一套B型“廉租房”的造價(jià)為4.8萬(wàn)元.

(1)請(qǐng)問(wèn)有幾種開(kāi)發(fā)建設(shè)方案?

(2)哪種建設(shè)方案投入資金最少?最少資金是多少萬(wàn)元?

(3)在(2)的方案下,為了讓更多的人享受到“惠民”政策,開(kāi)發(fā)建設(shè)辦公室決定通過(guò)縮小“廉租房”的面積來(lái)降低造價(jià)、節(jié)省資金.每套A戶(hù)型“廉租房”的造價(jià)降低0.7萬(wàn)元,每套B戶(hù)型“廉租房”的造價(jià)降低0.3萬(wàn)元,將節(jié)省下來(lái)的資金全部用于再次開(kāi)發(fā)建設(shè)縮小面積后的“廉租房”,如果同時(shí)建設(shè)A、B兩種戶(hù)型,請(qǐng)你直接寫(xiě)出再次開(kāi)發(fā)建設(shè)的方案.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,直線(xiàn)AB、CD相交于點(diǎn)O,OE分成兩部分;

(1)直接寫(xiě)出圖中的對(duì)頂角為 ,的鄰補(bǔ)角為 ;

(2)若,且,求的度數(shù).

查看答案和解析>>

同步練習(xí)冊(cè)答案