在平面直角坐標(biāo)系xoy中,已知A(4,0)、B(0,3),P是線段AB上一動(dòng)點(diǎn)(與點(diǎn)A、B不重合),Q是線段OA上一動(dòng)點(diǎn)(與點(diǎn)O、A不重合),C為OQ的中點(diǎn).
(1)求直線AB的解析式:
(2)過(guò)點(diǎn)C作AB的垂線,垂足為D,設(shè)OC=x,CD=d,寫出d與x的函數(shù)關(guān)系式,并指出自變量x的取值范圍;
(3)當(dāng)OQ=3時(shí),以O(shè)Q為直徑作圓C,試判斷直線AB與圓C的位置關(guān)系;
(4)當(dāng)PQ與x軸垂直時(shí)△OPQ可能為直角三角形嗎?若有可能,請(qǐng)求出線段OQ的長(zhǎng)的精英家教網(wǎng)取值范圍:若不可能,請(qǐng)說(shuō)明理由.
分析:(1)設(shè)直線AB的解析式為y=kx+b(k≠0),將A(4,0),B(0,3)的坐標(biāo)代入利用待定系數(shù)法求得,y=-
3
4
x+3;
(2)先證明△ACD∽△ABO,利用其成比例線段可求得d=-
3
5
x+
12
5
(0<x<4);
(3)當(dāng)OQ=3時(shí),圓C的半徑為
OQ
2
,即x=
3
2
此時(shí)圓心C到直線AB的距離d=
3
2
,所以d=x,即直線AB與圓C相切;
(4)不仿設(shè)圓C與直線AB的切點(diǎn)為M,當(dāng)PQ不與X軸垂直時(shí),要使△OPQ為直角三角形,須使∠OPQ=90°;
當(dāng)OQ<3時(shí),圓C與直線相離,∠OPQ<90°,
當(dāng)OQ=3時(shí),圓c與直線相切,
P點(diǎn)與M點(diǎn)重合.∠OPQ=90°,
當(dāng)3<OQ<4時(shí),圓c與線段AB有兩個(gè)交點(diǎn)滿足題設(shè)條件.所以當(dāng)3≤OQ<4時(shí),△OPQ可為直角三角形.
解答:解:(1)設(shè)直線AB的解析式為y=kx+b(k≠0),(1分)
將A(4,0),B(0,3)的坐標(biāo)代入有:
b=3
0=4k+b
?
b=3
k=-
3
4
,
∴y=-
3
4
x+3;(2分)

(2)△ACD∽△ABO
CD
OB
=
AC
AB

∴d=
AC
AB
×OB=
4-x
5
×3=
3
5
(4-x)
,
即:d=-
3
5
x+
12
5
(0<x<4);(5分)

(3)當(dāng)OQ=3時(shí),圓C的半徑為
OQ
2
(2分),即x=
3
2
,(3分)
此時(shí)圓心C到直線AB的距離d=
3
2
,
∴d=x,即直線AB與圓C相切;(8分)

(4)不妨設(shè)圓C與直線AB的切點(diǎn)為M,當(dāng)PQ不與X軸垂直時(shí),要使△OPQ為直角三角形,須使∠OPQ=90°,(9分)
當(dāng)OQ<3時(shí),圓C與直線相離,∠OPQ<90°,(10分)
當(dāng)OQ=3時(shí),圓c與直線相切,P點(diǎn)與M點(diǎn)重合.∠OPQ=90°,(11分)
當(dāng)3<OQ<4時(shí),圓c與線段AB有兩個(gè)交點(diǎn)滿足題設(shè)條件.
∴當(dāng)3≤OQ<4時(shí),△OPQ可為直角三角形.(12分)
點(diǎn)評(píng):主要考查了函數(shù)和幾何圖形的綜合運(yùn)用.解題的關(guān)鍵是會(huì)靈活的運(yùn)用函數(shù)圖象上點(diǎn)的意義和待定系數(shù)法求函數(shù)解析式,并會(huì)用相似三角形的性質(zhì)求得對(duì)應(yīng)線段之間的關(guān)系,熟練掌握直線與圓的位置關(guān)系.
試題中貫穿了方程思想和數(shù)形結(jié)合的思想,請(qǐng)注意體會(huì).
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來(lái)源: 題型:

13、在平面直角坐標(biāo)系xOy中,已知點(diǎn)A(2,-2),在y軸上確定點(diǎn)P,使△AOP為等腰三角形,則符合條件的有
4
個(gè).

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

在平面直角坐標(biāo)系xOy中,已知拋物線y=ax2+bx+c的對(duì)稱軸是x=1,并且經(jīng)過(guò)(-2,-5)和(5,-12)兩點(diǎn).
(1)求此拋物線的解析式;
(2)設(shè)此拋物線與x軸交于A、B兩點(diǎn)(點(diǎn)A在點(diǎn)B的左側(cè)),與y軸交于C 點(diǎn),D是線段BC上一點(diǎn)(不與點(diǎn)B、C重合),若以B、O、D為頂點(diǎn)的三角形與△BAC相似,求點(diǎn)D的坐標(biāo);
(3)點(diǎn)P在y軸上,點(diǎn)M在此拋物線上,若要使以點(diǎn)P、M、A、B為頂點(diǎn)的四邊形是平行四邊形,請(qǐng)你直接寫出點(diǎn)M的坐標(biāo).

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

精英家教網(wǎng)如圖,在平面直角坐標(biāo)系xOy中,△ABC的A、B兩個(gè)頂點(diǎn)在x軸上,頂點(diǎn)C在y軸的負(fù)半軸上.已知|OA|:|OB|=1:5,|OB|=|OC|,△ABC的面積S△ABC=15,拋物線y=ax2+bx+c(a≠0)經(jīng)過(guò)A、B、C三點(diǎn).
(1)求此拋物線的函數(shù)表達(dá)式;
(2)設(shè)E是y軸右側(cè)拋物線上異于點(diǎn)B的一個(gè)動(dòng)點(diǎn),過(guò)點(diǎn)E作x軸的平行線交拋物線于另一點(diǎn)F,過(guò)點(diǎn)F作FG垂直于x軸于點(diǎn)G,再過(guò)點(diǎn)E作EH垂直于x軸于點(diǎn)H,得到矩形EFGH.則在點(diǎn)E的運(yùn)動(dòng)過(guò)程中,當(dāng)矩形EFGH為正方形時(shí),求出該正方形的邊長(zhǎng);
(3)在拋物線上是否存在異于B、C的點(diǎn)M,使△MBC中BC邊上的高為7
2
?若存在,求出點(diǎn)M的坐標(biāo);若不存在,請(qǐng)說(shuō)明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

在平面直角坐標(biāo)系xOy中,已知A(2,-2),B(0,-2),在坐標(biāo)平面中確定點(diǎn)P,使△AOP與△AOB相似,則符合條件的點(diǎn)P共有
5
5
個(gè).

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

如圖,在平面直角坐標(biāo)系xOy中,A(2,1)、B(4,1)、C(1,3).與△ABC與△ABD全等,則點(diǎn)D坐標(biāo)為
(1,-1),(5,3)或(5,-1)
(1,-1),(5,3)或(5,-1)

查看答案和解析>>

同步練習(xí)冊(cè)答案