【題目】為了加強學生的安全意識,某校組織了學生參加安全知識競賽,從中抽取了部分的學生成績進行統(tǒng)計,繪制統(tǒng)計圖如圖(不完整).
類別 | 分數(shù)段 |
A | 50.5~60.5 |
B | 60.5~70.5 |
C | 70.5~80.5 |
D | 80.5~90.5 |
E | 90.5~100.5 |
請你根據(jù)上面的信息,解答下列問題.
(1)若A組的頻數(shù)比B組小24,求頻數(shù)直方圖中的a,b的值;
(2)在扇形統(tǒng)計圖中,D部分所對的圓心角為n°,求n的值并補全頻數(shù)直方圖;
(3)若成績在80分以上為優(yōu)秀,全校共有2 000名學生,估計成績優(yōu)秀的學生有多少名?
【答案】(1)40(2)126°,50(3)940名
【解析】
(1)根據(jù)若A組的頻數(shù)比B組小24,且已知兩個組的百分比,據(jù)此即可求得總?cè)藬?shù),然后根據(jù)百分比的意義求得a、b的值;
(2)利用360°乘以對應(yīng)的比例即可求解;
(3)利用總?cè)藬?shù)乘以對應(yīng)的百分比即可求解.
(1)學生總數(shù)是24÷(20%﹣8%)=200(人),
則a=200×8%=16,b=200×20%=40;
(2)n=360×=126°.
C組的人數(shù)是:200×25%=50.
;
(3)樣本D、E兩組的百分數(shù)的和為1﹣25%﹣20%﹣8%=47%,
∴2000×47%=940(名)
答估計成績優(yōu)秀的學生有940名.
科目:初中數(shù)學 來源: 題型:
【題目】如圖,在等邊中,,射線,點從點出發(fā)沿射線以的速度運動,點從點出發(fā)沿射線以的速度運動,如果點同時出發(fā),設(shè)運動時間為,當時,以為頂點的四邊形是平行四邊形.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,在平面直角坐標系xOy中,已知正比例函數(shù)y= -2x和反比例函數(shù)的圖象交于A(a,-4),B兩點。過原點O的另一條直線l與雙曲線交于點P,Q兩點(P點在第二象限),若以點A,B,P,Q為頂點的四邊形面積為24,則點P的坐標是_______
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】閱讀下面材料:
在數(shù)學課上,老師提出利用尺規(guī)作圖完成下面問題:
已知:∠ACB是△ABC的一個內(nèi)角.
求作:∠APB=∠ACB.
小明的做法如下:
如圖
①作線段AB的垂直平分線m;
②作線段BC的垂直平分線n,與直線m交于點O;
③以點O為圓心,OA為半徑作△ABC的外接圓;
④在弧ACB上取一點P,連結(jié)AP,BP.
所以∠APB=∠ACB.
老師說:“小明的作法正確.”
請回答:
(1)點O為△ABC外接圓圓心(即OA=OB=OC)的依據(jù)是_____;
(2)∠APB=∠ACB的依據(jù)是_____.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,吊車在水平地面上吊起貨物時,吊繩BC與地面保持垂直,吊臂AB與水平線的夾角為64°,吊臂底部A距地面1.5m.(計算結(jié)果精確到0.1m,參考數(shù)據(jù)sin64°≈0.90,cos64°≈0.44,tan64°≈2.05)
(1)當?shù)醣鄣撞緼與貨物的水平距離AC為5m時,吊臂AB的長為 m.
(2)如果該吊車吊臂的最大長度AD為20m,那么從地面上吊起貨物的最大高度是多少?(吊鉤的長度與貨物的高度忽略不計)
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,在平行四邊形ABCD中,以點A為圓心,AB長為半徑畫弧交AD于點F,再分別以點B、F為圓心,大于BF的相同長度為半徑畫弧,兩弧交于點P;連接AP并延長交BC于點E,連接EF.若四邊形ABEF的周長為16,∠C=60°,則四邊形ABEF的面積是___.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】淘寶網(wǎng)舉辦“雙十一”購物活動許多商家都會利用這個契機進行打折讓利的促銷活動.
(1)甲網(wǎng)店銷售的商品的成本為30元/件,網(wǎng)上標價為80元/件.“雙十一”購物活動當天,甲網(wǎng)店連續(xù)兩次降價銷售商品吸引顧客,問該店平均每次降價率為多少時,才能使商品的售價為39.2元/件?
(2)乙網(wǎng)店銷售一批名牌襯衫,平均每天銷售20件,每件盈利40元,為了擴大銷售,增加盈利減少庫存,商場決定采取適當?shù)慕祪r措施,經(jīng)調(diào)查發(fā)現(xiàn),如果每件降價1元,則每天可多售2件.商場若想每天盈利1200元,每件襯衫應(yīng)降價多少元?
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】“綠水青山,就是金山銀山”.某旅游景區(qū)為了保護環(huán)境,需購買甲,乙兩種型號的垃圾處理設(shè)備共10臺,已知每臺甲型設(shè)備日處理能力為12噸,每臺乙型設(shè)備日處理能力為15噸,購回的設(shè)備日處理能力總計不低于140噸.
(1)請你為該景區(qū)設(shè)計購買甲,乙兩種設(shè)備的方案;
(2)已知每臺甲型設(shè)備價格為3萬元,每臺乙型設(shè)備價格為4.4萬元.廠家為了促銷產(chǎn)品,規(guī)定總貨款不低于40萬元時,可按9折優(yōu)惠.問采用(1)中設(shè)計的哪種購買方案,使購買費用最少?
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com