【題目】小明準(zhǔn)備進(jìn)行如下操作實驗:把一根長為的鐵絲剪成兩段,并把每一段圍成一個正方形.

1)要使這兩個正方形的面積之和等于,小明該怎么剪?

2)小剛對小明說:這兩個正方形的面積之和不可能等于.”小剛的說法對嗎?請說明理由.

【答案】1)剪成40cm80cm的兩段;(2)小剛的說法正確,理由見解析.

【解析】

1)設(shè)剪成一段長為xcm,則另一段長為(120x)cm.就可以表示出這兩個正方形的面積,根據(jù)兩個正方形的面積之和等于500cm2建立方程求出其解即可;

2,如果方程有解就說明小剛的說法錯誤,否則正確.

1)設(shè)剪成一段長為xcm,則另一段長為(120x)cm,依題意得

,

解得,把一根120cm長的鐵絲剪成40cm80cm的兩段,圍成的正方形面積之和為500cm2;

2)小剛的說法正確,因為整理得,

,

∵△=16000

兩個正方形的面積之和不可能等于400cm2,

∴小剛的說法正確.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

【題目】隨著信息技術(shù)的迅猛發(fā)展,人們?nèi)ド虉鲑徫锏闹Ц斗绞礁佣鄻印⒈憬,在一次購物中,張華和李紅都想從微信支付寶、銀行卡、現(xiàn)金四種支付方式中選一種方式進(jìn)行支付.

(1)張華用微信支付的概率是______

(2)請用畫樹狀圖或列表法求出兩人恰好選擇同一種支付方式的概率.(其中微信、支付寶銀行卡、現(xiàn)金分別用字母“A”“B”“C”“D”代替)

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,拋物線經(jīng)過,兩點,頂點為D

ab的值;

將拋物線沿y軸方向上下平移,使頂點D落在x軸上.

求平移后所得圖象的函數(shù)解析式;

若將平移后的拋物線,再沿x軸方向左右平移得到新拋物線,若時,新拋物線對應(yīng)的函數(shù)有最小值2,求平移的方向和單位長度.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在等腰RtABC中,∠BAC90°,BC2,點PABC內(nèi)部的一個動點,且滿足∠PBC=∠PCA,則線段AP長的最小值為(  )

A.0.5B.1C.2D.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】定義:如果一個三角形中有兩個內(nèi)角αβ滿足α+2β90°,那我們稱這個三角形為近直角三角形

1)若ABC近直角三角形,∠B90°,∠C50°,則∠A  度;

2)如圖1,在RtABC中,∠BAC90°AB3,AC4.若BD是∠ABC的平分線,

①求證:BDC近直角三角形;

②在邊AC上是否存在點E(異于點D),使得BCE也是近直角三角形?若存在,請求出CE的長;若不存在,請說明理由.

3)如圖2,在RtABC中,∠BAC90°,點DAC邊上一點,以BD為直徑的圓交BC于點E,連結(jié)AEBD于點F,若BCD近直角三角形,且AB5,AF3,求tanC的值.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】山西省每年的體育考試分成必考科目與選考科目兩部分.其中選考科目是從一分鐘跳繩、擲實心球、坐位體前屈、仰臥起坐四個項目中選取一項.王紅與李麗是一對好朋友且都在2020年參加中考,實心球是她倆的弱項,其他三項都非常強,體育考試選考的四個項目中,她倆一定不會選實心球.

1)王紅在選考項目中,選中坐位體前屈的概率是

2)王紅與李麗選取同一個選考項目的概率是多少? (在畫樹狀圖或列表時,“一分鐘跳繩"用“”表示,“坐位體前屈”用“"表示,“仰臥起坐”用“”表示,“擲實心球”用“”表示)

3)通過對我省某市2020年參加中考的學(xué)生進(jìn)行隨機調(diào)查,發(fā)現(xiàn)該市選擇“坐位體前屈”的學(xué)生的頻率穩(wěn)定在左右,已知該市有人參加2020年中考體育,請由此估計該市這名學(xué)生中選擇“坐位體前屈”的人數(shù).

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】1)甲、乙兩人用如圖所示的、兩個轉(zhuǎn)盤(分別三等分和四等分)做游戲,規(guī)則是:轉(zhuǎn)動兩個轉(zhuǎn)盤各1次,若兩個轉(zhuǎn)盤停止轉(zhuǎn)動后,指針?biāo)趨^(qū)域的兩個數(shù)字之積為奇數(shù),則甲獲勝,否則乙獲勝.求甲獲勝的概率.

2)在一個不透明的袋中放入除顏色外都相同的1個紅球和n個白球,攪勻后從中任意摸出2個球,若兩個球中出現(xiàn)紅球的概率與(1)中甲獲勝的概率相同,則n=

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】已知,如圖,拋物線的頂點為,經(jīng)過拋物線上的兩點的直線交拋物線的對稱軸于點

1)求拋物線的解析式和直線的解析式.

2)在拋物線上兩點之間的部分(不包含兩點),是否存在點,使得?若存在,求出點的坐標(biāo);若不存在,請說明理由.

3)若點在拋物線上,點軸上,當(dāng)以點為頂點的四邊形是平行四邊形時,直接寫出滿足條件的點的坐標(biāo).

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在平面直角標(biāo)系中,拋物線Cyx軸交于A、B兩點(點A在點B的左側(cè)),與y軸交于點C,點Dy軸正半軸上一點.且滿足ODOC,連接BD,

1)如圖1,點P為拋物線上位于x軸下方一點,連接PB,PD,當(dāng)SPBD最大時,連接AP,以PB為邊向上作正BPQ,連接AQ,點M與點N為直線AQ上的兩點,MN2且點N位于M點下方,連接DN,求DN+MN+AM的最小值

2)如圖2,在第(1)問的條件下,點C關(guān)于x軸的對稱點為E,將BOE繞著點A逆時針旋轉(zhuǎn)60°得到B′O′E′,將拋物線y沿著射線PA方向平移,使得平移后的拋物線C′經(jīng)過點E,此時拋物線C′x軸的右交點記為點F,連接E′FB′F,R為線段E’F上的一點,連接B′R,將B′E′R沿著B′R翻折后與B′E′F重合部分記為B′RT,在平面內(nèi)找一個點S,使得以B′、R、T、S為頂點的四邊形為矩形,求點S的坐標(biāo).

查看答案和解析>>

同步練習(xí)冊答案