【題目】如圖,在△ABC中,∠ABC=90°,BD為AC邊上的中線.
(1)按如下要求尺規(guī)作圖,保留作圖痕跡,標注相應(yīng)的字母:過點C作直線CE,使CE⊥BC于點C,交BD的延長線于點E,連接AE;
(2)求證:四邊形ABCE是矩形.
【答案】(1)見解析;(2)見解析.
【解析】
(1)根據(jù)題意作圖即可;
(2)先根據(jù)BD為AC邊上的中線,AD=DC,再證明△ABD≌△CED(AAS)得AB=EC,已知∠ABC=90°即可得四邊形ABCE是矩形.
(1)解:如圖所示:E點即為所求;
(2)證明:∵CE⊥BC,
∴∠BCE=90°,
∵∠ABC=90°,
∴∠BCE+∠ABC=180°,
∴AB∥CE,
∴∠ABE=∠CEB,∠BAC=∠ECA,
∵BD為AC邊上的中線,
∴AD=DC,
在△ABD和△CED中
,
∴△ABD≌△CED(AAS),
∴AB=EC,
∴四邊形ABCE是平行四邊形,
∵∠ABC=90°,
∴平行四邊形ABCE是矩形.
科目:初中數(shù)學(xué) 來源: 題型:
【題目】某商家預(yù)測“華為P30”手機能暢銷,就用1600元購進一批該型號手機殼,面市后果然供不應(yīng)求,又購進6000元的同種型號手機殼,第二批所購買手機殼的數(shù)量是第一批的3倍,但進貨單價比第一批貴了2元。
(1)第一批手機殼的進貨單價是多少元?
(2)若兩次購進于機殼按同一價格銷售,全部傳完后,為使得獲利不少于2000元,那么銷售單價至少為多少?
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】已知:O是直線AB上的一點,是直角,OE平分.
(1)如圖1.若.求的度數(shù);
(2)在圖1中,,直接寫出的度數(shù)(用含a的代數(shù)式表示);
(3)將圖1中的繞頂點O順時針旋轉(zhuǎn)至圖2的位置,探究和的度數(shù)之間的關(guān)系.寫出你的結(jié)論,并說明理由.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,平面直角坐標系中,點A、B、C在x軸上,點D、E在y軸上,OA=OD=2,OC=OE=4,B為線段OA的中點,直線AD與經(jīng)過B、E、C三點的拋物線交于F、G兩點,與其對稱軸交于M.
(1)求經(jīng)過B、E、C三點的拋物線的解析式;
(2)若點P為線段FG上一個動點(與F、G不重合),當(dāng)P在什么位置時,以P、O、C為頂點的三角形是等腰三角形,請求出此時點P的坐標;
(3)若點P為直線FG上一個動點,Q為拋物線上任一點,拋物線的頂點為N,探究以P、Q、M、N為頂點的四邊形能否成為平行四邊形?若能,請直接寫出點P的坐標;若不能,請說明理由.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,有一直角三角形紙片ABC,∠C=90°,∠B=30°,將該直角三角形紙片沿DE折疊,使點B與點A重合,DE=1,則BC的長度為( )
A. 2 B. +2 C. 3 D. 2
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在平行四邊形OABC中,已知點A、C兩點的坐標為A (,),C (2,0).
(1)求點B的坐標.
(2)將平行四邊形OABC向左平移個單位長度,求所得四邊形A′B′C′O′四個頂點的坐標.
(3)求平行四邊形OABC的面積.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】近些年全國各地頻發(fā)霧霾天氣,給人民群眾的身體健康帶來了危害,某商場看到商機后決定購進甲、乙兩種空氣凈化器進行銷售.若每臺甲種空氣凈化器的進價比每臺乙種空氣凈化器的進價少300元,且用6000元購進甲種空氣凈化器的數(shù)量與用7500元購進乙種空氣凈化器的數(shù)量相同.
(1)求每臺甲種空氣凈化器、每臺乙種空氣凈化器的進價分別為多少元?
(2)若該商場準備進貨甲、乙兩種空氣凈化器共30臺,且進貨花費不超過42000元,問最少進貨甲種空氣凈化器多少臺?
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖(一),為一條拉直的細線,兩點在上,且. 若先固定點,將折向 ,使得重迭在BP上,如圖(二);再從圖(二)的點及與點重迭處一起剪開,使得細線分成三段,則此三段細線由小到大的長度比為( )
A.B.C.D.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】足球世界杯預(yù)選賽實行主客場的循環(huán)賽,即每兩支球隊都要在自己的主場和客場踢一場.共舉行比賽場,則參加比賽的球隊共有________支.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com