已知:在RT△ACB中,∠ACB=90°,CD是斜邊上的中線,CD=4,且a+b=10,請你利用所學知識求△ACB的面積.

解:∵CD是斜邊AB上的中線,CD=4,
∴AB=8(直角三角形中斜邊上的中線是斜邊的一半);
∵a+b=10①,∠ACB=90°,
∴a2+b2=82②;
將①式兩邊平方得,a2+2ab+b2=100③;
③-②得,2ab=100-64,
∴ab=18;
∴S△ACB=ab=9.
(其他方法也可以,比如用一元二次方程解出,然后算出面積)
分析:根據(jù)已知可求得AB的長,再利用勾股定理及完全平方公式即可求得ab的值,從而根據(jù)三角形的面積公式即可求得其面積.
點評:此題主要考查學生對勾股定理及完全平方公式的變形運用能力.
練習冊系列答案
相關習題

科目:初中數(shù)學 來源: 題型:

精英家教網(wǎng)已知:在RT△ACB中,∠ACB=90°,CD是斜邊上的中線,CD=4,且a+b=10,請你利用所學知識求△ACB的面積.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

如圖,已知,在Rt△ABC中,∠ACB=90°,∠BAC=30°,BC=6cm;D為AC上一點(不與A、C不精英家教網(wǎng)重合),過D作DQ⊥AC(DQ與AB在AC的同側(cè));點P從D點出發(fā),在射線DQ上運動,連接PA、PC.
(1)當PA=PC時,求出AD的長;
(2)當△PAC構成等腰直角三角形時,求出AD、DP的長;
(3)當△PAC構成等邊三角形時,求出AD、DP的長;
(4)在運動變化過程中,△CAP與△ABC能否相似?若△CAP與△ABC相似,求出此時AD與DP的長.

查看答案和解析>>

科目:初中數(shù)學 來源:安徽省月考題 題型:解答題

已知:在Rt△ACB中,∠ACB=90,CD是斜邊上的中線,CD=4,且a+b=10, 請你利用所學知識求△ACB的面積。

查看答案和解析>>

科目:初中數(shù)學 來源:2009-2010學年安徽省宣城市六中九年級(上)第二次月考數(shù)學試卷(解析版) 題型:解答題

已知:在RT△ACB中,∠ACB=90°,CD是斜邊上的中線,CD=4,且a+b=10,請你利用所學知識求△ACB的面積.

查看答案和解析>>

同步練習冊答案