【題目】問題情境:如圖1,AB∥CD,∠PAB=125°,∠PCD=135°,求∠APC的度數(shù).

小明的思路是:過PPE∥AB,通過平行線性質(zhì)來求∠APC

(1)按小明的思路,易求得∠APC的度數(shù)為   度。

(2)問題遷移:如圖2AB∥CD,點(diǎn)P在射線OM上運(yùn)動(dòng),記∠PAB=α,∠PCD=β,當(dāng)點(diǎn)PB、D兩點(diǎn)之間運(yùn)動(dòng)時(shí),問∠APCα、β之間有何數(shù)量關(guān)系?請(qǐng)說明理由;

(3)(2)的條件下,如果點(diǎn)P運(yùn)動(dòng)到D點(diǎn)右側(cè)(不包括D點(diǎn)),則∠APCα、β之間的數(shù)量關(guān)系為 如果點(diǎn)P運(yùn)動(dòng)到B點(diǎn)左側(cè)(不包括B點(diǎn)),則∠APCα、β之間的數(shù)量關(guān)系 .(直接寫出結(jié)果)

【答案】1100°;(2)∠APC,理由詳見解析; 3)∠APC =, APC =

【解析】

1)過點(diǎn)PPEAB,通過平行線性質(zhì)來求∠APC;

2)過PPEADACE,推出ABPEDC,根據(jù)平行線的性質(zhì)得出∠α=APE,∠β=CPE,即可得出答案;

3)分兩種情況:PBD延長線上;PDB延長線上,分別畫出圖形,根據(jù)平行線的性質(zhì)得出∠α=APE,∠β=CPE,即可得出答案.

解:(1)如圖1,過PPEAB,

ABCD,

PEABCD,

∴∠A+APE=180°,∠C+CPE=180°

∵∠PAB=125°,∠PCD=135°,

∴∠APE=55°,∠CPE=45°,

∴∠APC=APE+CPE=55°+45°=100°.

2)∠APC=α+β,

理由是:如下圖,過PPEAB,交ACE,

ABCD,

ABPECD

∴∠APE=PAB=α,∠CPE=PCD=β,

∴∠APC=APE+CPE=α+β.

3)如下圖所示,當(dāng)PBD延長線上時(shí),

PPEAB,交ACE

ABCD,

ABPECD

∴∠1=PAB=α,

∵∠1=APC+PCD

∴∠APC=1-PCD

∴∠APC=α-β,

如下圖所示,當(dāng)PDB延長線上時(shí),

PPEAB,交ACE,

ABCD

ABPECD,

∴∠EPC=PCD=β,∠EPA=PAB=α

又∵∠EPC=EPA+APC

∴∠APC=β-α.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

【題目】已知:在△ABC中,∠ACB=90°,CD⊥AB于D,BE:AB=3:5,若CE= ,cos∠ACD= ,求tan∠AEC的值及CD的長.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】現(xiàn)有2019條直線且有…,則直線的位置關(guān)系是___________.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】小強(qiáng)家有一塊三角形菜地,量得兩邊長分別為,,第三邊上的高為.請(qǐng)你幫小強(qiáng)計(jì)算這塊菜地的面積.(結(jié)果保留根號(hào))

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】某地區(qū)經(jīng)過一年的新農(nóng)村建設(shè),農(nóng)村的經(jīng)濟(jì)收入增加了一倍,實(shí)現(xiàn)翻番,為更好地了解該地區(qū)農(nóng)村的經(jīng)濟(jì)收入變化情況,統(tǒng)計(jì)了該地區(qū)新農(nóng)村建設(shè)前后農(nóng)村的經(jīng)濟(jì)收入構(gòu)成比例,得到如下統(tǒng)計(jì)圖:

建設(shè)前經(jīng)濟(jì)收入構(gòu)成比例統(tǒng)計(jì)圖 建設(shè)后經(jīng)濟(jì)收入構(gòu)成比例統(tǒng)計(jì)圖

則下面結(jié)論中不正確的是( )

A. 新農(nóng)村建設(shè)后,養(yǎng)殖收入增加了一倍

B. 新農(nóng)村建設(shè)后,種植收入減少

C. 新農(nóng)村建設(shè)后,養(yǎng)殖收入與第三產(chǎn)業(yè)收入的總和超過了經(jīng)濟(jì)收入的一半

D. 新農(nóng)村建設(shè)后,其他收入增加了一倍以上

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】計(jì)算

(3)-(-2a)4

(4)272=a6=9b,求的值.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】1)閱讀下面的材料并把解答過程補(bǔ)充完整.

問題:在關(guān)于的二元一次方程組中,,,求的取值范圍.

在關(guān)于的二元一次方程組中,利用參數(shù)的代數(shù)式表示,,然后根據(jù),列出關(guān)于參數(shù)的不等式組即可求得的取值范圍.解:由,解得,又因?yàn)?/span>,所以解得____________.

2)請(qǐng)你按照上述方法,完成下列問題:

①已知,且,,求的取值范圍;

②已知,在關(guān)于,的二元一次方程組中,,,請(qǐng)直接寫出的取值范圍(結(jié)果用含的式子表示)____________.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,面積為30的長方形OABC的邊OA在數(shù)軸上,O為原點(diǎn),OC=5.將長方形OABC沿?cái)?shù)軸水平移動(dòng),O,AB,C移動(dòng)后的對(duì)應(yīng)點(diǎn)分別記為O1 A1, B1 C1,移動(dòng)后的長方形O1A1B1C1與原長方形OABC重疊部分的面積記為S

1)當(dāng)S恰好等于原長方形面積的一半時(shí),數(shù)軸上點(diǎn)A1表示的數(shù)是多少?

2)設(shè)點(diǎn)A的移動(dòng)距離AA1=x

①當(dāng)S=10時(shí),求x的值;

D為線段AA1的中點(diǎn),點(diǎn)E在線段OO1上,且OE=OO1,當(dāng)點(diǎn)D,E所表示的數(shù)互為相反數(shù)時(shí),求x的值.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】不等式組 的解集在數(shù)軸上表示正確的是( )
A.
B.
C.
D.

查看答案和解析>>

同步練習(xí)冊(cè)答案