【題目】如圖,AB是⊙O的直徑,點(diǎn)C是⊙O上一點(diǎn),AD與過(guò)點(diǎn)C的切線垂直,垂足為點(diǎn)D,直線DC與AB的延長(zhǎng)線相交于點(diǎn)P,弦CE平分∠ACB,交AB點(diǎn)F,連接BE.
(1)求證:AC平分∠DAB;
(2)求證:PC=PF;
(3)若tan∠ABC=,AB=14,求線段PC的長(zhǎng).
【答案】(1)(2)證明見解析;(3)24.
【解析】
(1)由PD切⊙O于點(diǎn)C,AD與過(guò)點(diǎn)C的切線垂直,易證得OC∥AD,繼而證得AC平分∠DAB;
(2)由條件可得∠CAO=∠PCB,結(jié)合條件可得∠PCF=∠PFC,即可證得PC=PF;
(3)易證△PAC∽△PCB,由相似三角形的性質(zhì)可得到 ,又因?yàn)?/span>tan∠ABC= ,所以可得=,進(jìn)而可得到=,設(shè)PC=4k,PB=3k,則在Rt△POC中,利用勾股定理可得PC2+OC2=OP2,進(jìn)而可建立關(guān)于k的方程,解方程求出k的值即可求出PC的長(zhǎng).
(1)證明:∵PD切⊙O于點(diǎn)C,
∴OC⊥PD,
又∵AD⊥PD,
∴OC∥AD,
∴∠ACO=∠DAC.
∵OC=OA,
∴∠ACO=∠CAO,
∴∠DAC=∠CAO,
即AC平分∠DAB;
(2)證明:∵AD⊥PD,
∴∠DAC+∠ACD=90°.
又∵AB為⊙O的直徑,
∴∠ACB=90°.
∴∠PCB+∠ACD=90°,
∴∠DAC=∠PCB.
又∵∠DAC=∠CAO,
∴∠CAO=∠PCB.
∵CE平分∠ACB,
∴∠ACF=∠BCF,
∴∠CAO+∠ACF=∠PCB+∠BCF,
∴∠PFC=∠PCF,
∴PC=PF;
(3)解:∵∠PAC=∠PCB,∠P=∠P,
∴△PAC∽△PCB,
∴.
又∵tan∠ABC=,
∴,
∴,
設(shè)PC=4k,PB=3k,則在Rt△POC中,PO=3k+7,OC=7,
∵PC2+OC2=OP2,
∴(4k)2+72=(3k+7)2,
∴k=6 (k=0不合題意,舍去).
∴PC=4k=4×6=24.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】綜合與探究:
(1)操作發(fā)現(xiàn):如圖1,點(diǎn)D是等邊△ABC邊BA上一動(dòng)點(diǎn)(點(diǎn)D與點(diǎn)B不重合),連結(jié)DC,以DC為邊在CD上方作等邊△DCE,連結(jié)AE.你能發(fā)現(xiàn)線段AE與BD之間的數(shù)量關(guān)系嗎? 證明你發(fā)現(xiàn)的結(jié)論.
(2)類比猜想:如圖2,當(dāng)動(dòng)點(diǎn)D運(yùn)動(dòng)至等邊△ABC邊BA的延長(zhǎng)線上時(shí),其余條件不變,猜想:(1)中的結(jié)論是否成立,不用說(shuō)明理由.
(3)拓展探究:如圖3,當(dāng)動(dòng)點(diǎn)D在等邊△ABC邊BA上運(yùn)動(dòng)時(shí)(點(diǎn)D與點(diǎn)B不重合),連結(jié) DC,以DC為邊在CD上方和下方分別作等邊△DCE和等邊△DCE′,連結(jié)AE、BE′,探究:AE、BE′與AB有何數(shù)量關(guān)系?并說(shuō)明理由.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,是等邊三角形,,是邊上一動(dòng)點(diǎn),由向運(yùn)動(dòng)(與、不重合),是延長(zhǎng)線上一動(dòng)點(diǎn),與點(diǎn)同時(shí)以相同的速度由向延長(zhǎng)線方向運(yùn)動(dòng)(不與重合),過(guò)作于,連接交于.
(1)證明:在運(yùn)動(dòng)過(guò)程中,點(diǎn)是線段的中點(diǎn);
(2)當(dāng)時(shí),求的長(zhǎng);
(3)在運(yùn)動(dòng)過(guò)程中線段的長(zhǎng)是否發(fā)生變化?如果不變,求出線段的長(zhǎng);如果變化請(qǐng)說(shuō)明理由.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,在Rt△ABC中,∠C=90°,AC=8,BC=6,D、E分別是AB和BC上的點(diǎn).把△ABC沿著直線DE折疊,頂點(diǎn)B對(duì)應(yīng)點(diǎn)是點(diǎn)B′
(1)如圖1,點(diǎn)B′恰好落在線段AC的中點(diǎn)處,求CE的長(zhǎng);
(2)如圖2,點(diǎn)B′落在線段AC上,當(dāng)BD=BE時(shí),求B′C的長(zhǎng);
(3)如圖3,E是BC的中點(diǎn),直接寫出AB′的最小值.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,某人在山坡坡腳C處測(cè)得一座建筑物頂點(diǎn)A的仰角為63.4°,沿山坡向上走到P處再測(cè)得該建筑物頂點(diǎn)A的仰角為53°.已知BC=90米,且B、C、D在同一條直線上,山坡坡度i=5:12.
(1)求此人所在位置點(diǎn)P的鉛直高度.(結(jié)果精確到0.1米)
(2)求此人從所在位置點(diǎn)P走到建筑物底部B點(diǎn)的路程(結(jié)果精確到0.1米)
(測(cè)傾器的高度忽略不計(jì),參考數(shù)據(jù):tan53°≈,tan63.5°≈2)
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖所示,某辦公大樓正前力有一根高度是15米的旗桿ED,從辦公樓頂點(diǎn)A測(cè)得族桿頂端E的俯角α是45°,旗桿底端D到大樓前梯坎低端C的距離DC是20米,梯坎坡長(zhǎng)BC是13米,梯坎坡度i=1:2.4,則大樓AB的高度的為_____米.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知:1號(hào)探測(cè)氣球從海拔5m處勻速上升,同時(shí),2號(hào)探測(cè)氣球從海拔15m處勻速上升,且兩個(gè)氣球都上升了1h.兩個(gè)氣球所在位置的海拔y(單位:m)與上升時(shí)間x(單位:min)之間的函數(shù)關(guān)系如圖所示,根據(jù)圖中的信息,下列說(shuō)法:
①上升20min時(shí),兩個(gè)氣球都位于海拔25m的高度;
②1號(hào)探測(cè)氣球所在位置的海拔關(guān)于上升時(shí)間x的函數(shù)關(guān)系式是y=x+5(0≤x≤60);
③記兩個(gè)氣球的海拔高度差為m,則當(dāng)0≤x≤50時(shí),m的最大值為15m.
其中,說(shuō)法正確的個(gè)數(shù)是( )
A.0B.1C.2D.3
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知∠AOB=90°,在∠AOB的平分線OM上有一點(diǎn)C,將一個(gè)三角板的直角頂點(diǎn)與C重合,它的兩條直角邊分別與OA,OB(或它們的反向延長(zhǎng)線)相交于點(diǎn)D,E.
當(dāng)三角板繞點(diǎn)C旋轉(zhuǎn)到CD與OA垂直時(shí)(如圖①),易證:OD+OE=OC;
當(dāng)三角板繞點(diǎn)C旋轉(zhuǎn)到CD與OA不垂直時(shí),即在圖②,圖③這兩種情況下,上述結(jié)論是否仍然成立?若成立,請(qǐng)給予證明;若不成立,線段OD,OE,OC之間又有怎樣的數(shù)量關(guān)系?請(qǐng)寫出你的猜想,不需證明.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知:二次函數(shù)滿足下列條件:①拋物線y=ax2+bx與直線y=x只有一個(gè)交點(diǎn);②對(duì)于任意實(shí)數(shù)x,a(-x+5)2+b(-x+5)=a(x-3)2+b(x-3)都成立.
(1)求二次函數(shù)y=ax2+bx的解析式;
(2)若當(dāng)-2≤x≤r(r≠0)時(shí),恰有t≤y≤1.5r成立,求t和r的值.
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com