【題目】如圖,AB是⊙O的直徑,點(diǎn)C是⊙O上一點(diǎn),AD與過(guò)點(diǎn)C的切線垂直,垂足為點(diǎn)D,直線DCAB的延長(zhǎng)線相交于點(diǎn)P,弦CE平分∠ACB,交AB點(diǎn)F,連接BE

(1)求證:AC平分∠DAB;

(2)求證:PCPF;

(3)tanABC,AB14,求線段PC的長(zhǎng).

【答案】(1)(2)證明見解析;(3)24.

【解析】

(1)由PD切⊙O于點(diǎn)C,AD與過(guò)點(diǎn)C的切線垂直,易證得OC∥AD,繼而證得AC平分∠DAB;
(2)由條件可得∠CAO=PCB,結(jié)合條件可得∠PCF=∠PFC,即可證得PC=PF;
(3)易證△PAC∽△PCB,由相似三角形的性質(zhì)可得到 ,又因?yàn)?/span>tan∠ABC= ,所以可得=,進(jìn)而可得到=,設(shè)PC=4k,PB=3k,則在Rt△POC中,利用勾股定理可得PC2+OC2=OP2,進(jìn)而可建立關(guān)于k的方程,解方程求出k的值即可求出PC的長(zhǎng).

(1)證明:∵PD切⊙O于點(diǎn)C,

∴OC⊥PD,

又∵AD⊥PD,

∴OC∥AD,

∴∠ACO=∠DAC.

∵OC=OA,

∴∠ACO=∠CAO,

∴∠DAC=∠CAO,

即AC平分∠DAB;

(2)證明:∵AD⊥PD,

∴∠DAC+∠ACD=90°.

又∵AB為⊙O的直徑,

∴∠ACB=90°.

∴∠PCB+∠ACD=90°,

∴∠DAC=∠PCB.

又∵∠DAC=∠CAO,

∴∠CAO=∠PCB.

∵CE平分∠ACB,

∴∠ACF=∠BCF,

∴∠CAO+∠ACF=∠PCB+∠BCF,

∴∠PFC=∠PCF,

∴PC=PF;

(3)解:∵∠PAC=∠PCB,∠P=∠P,

∴△PAC∽△PCB,

又∵tan∠ABC=

,

,

設(shè)PC=4k,PB=3k,則在Rt△POC中,PO=3k+7,OC=7,

∵PC2+OC2=OP2,

∴(4k)2+72=(3k+7)2,

∴k=6 (k=0不合題意,舍去).

∴PC=4k=4×6=24.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】綜合與探究:

1)操作發(fā)現(xiàn):如圖1,點(diǎn)D是等邊△ABCBA上一動(dòng)點(diǎn)(點(diǎn)D與點(diǎn)B不重合),連結(jié)DC,以DC為邊在CD上方作等邊△DCE,連結(jié)AE.你能發(fā)現(xiàn)線段AEBD之間的數(shù)量關(guān)系嗎? 證明你發(fā)現(xiàn)的結(jié)論.

2)類比猜想:如圖2,當(dāng)動(dòng)點(diǎn)D運(yùn)動(dòng)至等邊△ABCBA的延長(zhǎng)線上時(shí),其余條件不變,猜想:(1)中的結(jié)論是否成立,不用說(shuō)明理由.

3)拓展探究:如圖3,當(dāng)動(dòng)點(diǎn)D在等邊△ABCBA上運(yùn)動(dòng)時(shí)(點(diǎn)D與點(diǎn)B不重合),連結(jié) DC,以DC為邊在CD上方和下方分別作等邊△DCE和等邊△DCE,連結(jié)AEBE,探究:AEBEAB有何數(shù)量關(guān)系?并說(shuō)明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,是等邊三角形,,邊上一動(dòng)點(diǎn),由運(yùn)動(dòng)(與、不重合),延長(zhǎng)線上一動(dòng)點(diǎn),與點(diǎn)同時(shí)以相同的速度由延長(zhǎng)線方向運(yùn)動(dòng)(不與重合),過(guò),連接

1)證明:在運(yùn)動(dòng)過(guò)程中,點(diǎn)是線段的中點(diǎn);

2)當(dāng)時(shí),求的長(zhǎng);

3)在運(yùn)動(dòng)過(guò)程中線段的長(zhǎng)是否發(fā)生變化?如果不變,求出線段的長(zhǎng);如果變化請(qǐng)說(shuō)明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,在Rt△ABC中,∠C=90°,AC=8BC=6,DE分別是ABBC上的點(diǎn).把△ABC沿著直線DE折疊,頂點(diǎn)B對(duì)應(yīng)點(diǎn)是點(diǎn)B′

1)如圖1,點(diǎn)B′恰好落在線段AC的中點(diǎn)處,求CE的長(zhǎng);

2)如圖2,點(diǎn)B′落在線段AC上,當(dāng)BD=BE時(shí),求B′C的長(zhǎng);

3)如圖3EBC的中點(diǎn),直接寫出AB′的最小值.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,某人在山坡坡腳C處測(cè)得一座建筑物頂點(diǎn)A的仰角為63.4°,沿山坡向上走到P處再測(cè)得該建筑物頂點(diǎn)A的仰角為53°.已知BC=90米,且B、C、D在同一條直線上,山坡坡度i=5:12.

(1)求此人所在位置點(diǎn)P的鉛直高度.(結(jié)果精確到0.1米)

(2)求此人從所在位置點(diǎn)P走到建筑物底部B點(diǎn)的路程(結(jié)果精確到0.1米)

測(cè)傾器的高度忽略不計(jì),參考數(shù)據(jù):tan53°≈,tan63.5°≈2)

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖所示,某辦公大樓正前力有一根高度是15米的旗桿ED,從辦公樓頂點(diǎn)A測(cè)得族桿頂端E的俯角α是45°,旗桿底端D到大樓前梯坎低端C的距離DC是20米,梯坎坡長(zhǎng)BC是13米,梯坎坡度i=1:2.4,則大樓AB的高度的為_____米.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知:1號(hào)探測(cè)氣球從海拔5m處勻速上升,同時(shí),2號(hào)探測(cè)氣球從海拔15m處勻速上升,且兩個(gè)氣球都上升了1h.兩個(gè)氣球所在位置的海拔y(單位:m)與上升時(shí)間x(單位:min)之間的函數(shù)關(guān)系如圖所示,根據(jù)圖中的信息,下列說(shuō)法:

①上升20min時(shí),兩個(gè)氣球都位于海拔25m的高度;

1號(hào)探測(cè)氣球所在位置的海拔關(guān)于上升時(shí)間x的函數(shù)關(guān)系式是y=x+5(0≤x≤60)

③記兩個(gè)氣球的海拔高度差為m,則當(dāng)0≤x≤50時(shí),m的最大值為15m

其中,說(shuō)法正確的個(gè)數(shù)是(

A.0B.1C.2D.3

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知∠AOB90°,在∠AOB的平分線OM上有一點(diǎn)C,將一個(gè)三角板的直角頂點(diǎn)與C重合,它的兩條直角邊分別與OA,OB(或它們的反向延長(zhǎng)線)相交于點(diǎn)DE.

當(dāng)三角板繞點(diǎn)C旋轉(zhuǎn)到CDOA垂直時(shí)(如圖①),易證:ODOEOC;

當(dāng)三角板繞點(diǎn)C旋轉(zhuǎn)到CDOA不垂直時(shí),即在圖②,圖③這兩種情況下,上述結(jié)論是否仍然成立?若成立,請(qǐng)給予證明;若不成立,線段OD,OEOC之間又有怎樣的數(shù)量關(guān)系?請(qǐng)寫出你的猜想,不需證明.

  

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知:二次函數(shù)滿足下列條件:①拋物線y=ax2+bx與直線y=x只有一個(gè)交點(diǎn);②對(duì)于任意實(shí)數(shù)x,a(-x+52+b(-x+5)=ax-32+bx-3)都成立.

1)求二次函數(shù)y=ax2+bx的解析式;

2)若當(dāng)-2xrr0)時(shí),恰有ty1.5r成立,求tr的值.

查看答案和解析>>

同步練習(xí)冊(cè)答案